González Hugo Imaz, Cinacchi Giorgio
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, España.
Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, España.
J Phys Chem B. 2023 Aug 3;127(30):6814-6824. doi: 10.1021/acs.jpcb.3c03195. Epub 2023 Jul 21.
This work numerically investigates dense disordered (maximally random) jammed packings of hard spherocylinders of cylinder length and diameter by focusing on / ∈ [0,2]. It is within this interval that one expects that the packing fraction of these dense disordered jammed packings ϕ attains a maximum. This work confirms the form of the graph ϕ versus /: here, comparably to certain previous investigations, it is found that the maximal ϕ = 0.721 ± 0.001 occurs at / = 0.45 ± 0.05. Furthermore, this work meticulously characterizes the structure of these dense disordered jammed packings via the special pair-correlation function of the interparticle distance scaled by the contact distance and the ensuing analysis of the statistics of the hard spherocylinders in contact: here, distinctly from all previous investigations, it is found that the dense disordered jammed packings of hard spherocylinders with 0.45 ≲ / ≤ 2 are isostatic.
这项工作通过关注 / ∈ [0,2] 对长度为 、直径为 的硬球柱体的致密无序(最大随机)堵塞堆积进行了数值研究。正是在这个区间内,人们预期这些致密无序堵塞堆积的堆积分数 ϕ 会达到最大值。这项工作证实了 ϕ 与 / 的关系图的形式:在这里,与之前的某些研究类似,发现最大 ϕ = 0.721 ± 0.001 出现在 / = 0.45 ± 0.05 处。此外,这项工作通过由接触距离缩放的粒子间距离的特殊对关联函数以及对接触中的硬球柱体统计数据的后续分析,细致地刻画了这些致密无序堵塞堆积的结构:在这里,与之前所有研究明显不同的是,发现 0.45 ≲ / ≤ 2 的硬球柱体的致密无序堵塞堆积是等静压的。