Weron Aleksander, Burnecki Krzysztof, Mercik Szymon, Weron Karina
Hugo Steinhaus Center, Institute of Mathematics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 2):016113. doi: 10.1103/PhysRevE.71.016113. Epub 2005 Jan 12.
A canonical decomposition of H-self-similar Lévy symmetric alpha-stable processes is presented. The resulting components completely described by both deterministic kernels and the corresponding stochastic integral with respect to the Lévy symmetric alpha-stable motion are shown to be related to the dissipative and conservative parts of the dynamics. This result provides stochastic analysis tools for study the anomalous diffusion phenomena in the Langevin equation framework. For example, a simple computer test for testing the origins of self-similarity is implemented for four real empirical time series recorded from different physical systems: an ionic current flow through a single channel in a biological membrane, an energy of solar flares, a seismic electric signal recorded during seismic Earth activity, and foreign exchange rate daily returns.
给出了H - 自相似Lévy对称α - 稳定过程的一种典型分解。结果表明,由确定性核以及关于Lévy对称α - 稳定运动的相应随机积分完全描述的所得分量与动力学的耗散部分和保守部分相关。该结果为研究朗之万方程框架下的反常扩散现象提供了随机分析工具。例如,针对从不同物理系统记录的四个实际经验时间序列实施了一个用于测试自相似性起源的简单计算机测试:通过生物膜中单个通道的离子电流、太阳耀斑的能量、地震活动期间记录的地震电信号以及外汇日收益率。