Dybiec Bartłomiej
M. Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, Jagellonian University, ul. Reymonta 4, 30-059 Kraków, Poland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061120. doi: 10.1103/PhysRevE.78.061120. Epub 2008 Dec 19.
We study the motion of an overdamped test particle in a static periodic potential lacking spatial symmetry under the influence of periodically modulated alpha -stable (Lévy) type noise. Due to the nonthermal character of the driving noise, the particle exhibits a motion with a preferred direction. The additional periodic modulation of the noise asymmetry changes the behavior of the static "Lévy ratchet." For the fast rate of the noise asymmetry modulation, the Lévy ratchet behaves like the one driven by the symmetric alpha -stable noise. When the modulation period is larger, the nontrivial effects of the noise asymmetry on the behavior of the Lévy ratchet are visible. In particular, the current inversion is observed in the system at hand. The properties of the Lévy ratchet are studied by use of the robust measures of directionality, which are defined regardless of the type of the stochastic driving.
我们研究了在周期性调制的α稳定(Lévy)型噪声影响下,处于缺乏空间对称性的静态周期势中的过阻尼测试粒子的运动。由于驱动噪声的非热特性,粒子呈现出具有优先方向的运动。噪声不对称性的额外周期性调制改变了静态“Lévy棘轮”的行为。对于噪声不对称性调制的快速速率,Lévy棘轮的行为类似于由对称α稳定噪声驱动的棘轮。当调制周期较大时,噪声不对称性对Lévy棘轮行为的非平凡效应就会显现出来。特别是,在当前系统中观察到了电流反转。通过使用稳健的方向性度量来研究Lévy棘轮的特性,这些度量的定义与随机驱动的类型无关。