Berko Dikla, Carmi Yaron, Cafri Gal, Ben-Zaken Shimrit, Sheikhet Helena Migalovich, Tzehoval Esther, Eisenbach Lea, Margalit Alon, Gross Gideon
Laboratory of Immunology, MIGAL-Galilee Technology Center, Kiryat Shmona, Israel.
J Immunol. 2005 Feb 15;174(4):2116-23. doi: 10.4049/jimmunol.174.4.2116.
The magnitude of response elicited by CTL-inducing vaccines correlates with the density of MHC class I (MHC-I)-peptide complexes formed on the APC membrane. The MHC-I L chain, beta2-microglobulin (beta2m), governs complex stability. We reasoned that genetically converting beta2m into an integral membrane protein should exert a marked stabilizing effect on the resulting MHC-I molecules and enhance vaccine efficacy. In the present study, we show that expression of membranal human beta2m (hbeta2m) in mouse RMA-S cells elevates MHC-I thermal stability. RMA-S transfectants bind an exogenous peptide at concentrations 10(4)- to 10(6)-fold lower than parental RMA-S, as detected by complex-specific Abs and by T cell activation. Moreover, saturation of the transfectants' MHC-I by exogenous peptide occurs within 1 min, as compared with approximately 1 h required for parental cells. At saturation, however, level of peptide bound by modified cells is only 3- to 5-fold higher. Expression of native hbeta2m only results in marginal effect on the binding profile. Soluble beta2m has no effect on the accelerated kinetics, but the kinetics of transfectants parallel that of parental cells in the presence of Abs to hbeta2m. Ab inhibition and coimmunoprecipitation analyses suggest that both prolonged persistence of peptide-receptive H chain/beta2m heterodimers and fast heterodimer formation via lateral diffusion may contribute to stabilization. In vivo, peptide-loaded transfectants are considerably superior to parental cells in suppressing tumor growth. Our findings support the role of an allosteric mechanism in determining ternary MHC-I complex stability and propose membranal beta2m as a novel scaffold for CTL induction.
CTL诱导疫苗引发的反应强度与抗原呈递细胞(APC)膜上形成的MHC I类(MHC-I)-肽复合物的密度相关。MHC-I轻链,即β2微球蛋白(β2m),决定复合物的稳定性。我们推测,通过基因工程将β2m转化为整合膜蛋白应该会对产生的MHC-I分子产生显著的稳定作用,并提高疫苗效力。在本研究中,我们表明在小鼠RMA-S细胞中表达膜型人β2m(hβ2m)可提高MHC-I的热稳定性。通过复合物特异性抗体和T细胞活化检测发现,RMA-S转染细胞结合外源性肽的浓度比亲代RMA-S细胞低10^4至10^6倍。此外,与亲代细胞大约需要1小时相比,转染细胞的MHC-I在外源性肽作用下1分钟内就会饱和。然而,在饱和状态下,修饰细胞结合的肽水平仅高3至5倍。天然hβ2m的表达对结合情况仅产生微小影响。可溶性β2m对加速动力学没有影响,但在存在抗hβ2m抗体的情况下,转染细胞的动力学与亲代细胞相似。抗体抑制和共免疫沉淀分析表明,肽受体重链/β2m异二聚体的持续存在延长以及通过侧向扩散快速形成异二聚体都可能有助于稳定作用。在体内,负载肽的转染细胞在抑制肿瘤生长方面明显优于亲代细胞。我们的研究结果支持变构机制在决定三元MHC-I复合物稳定性中的作用,并提出膜型β2m作为CTL诱导的新型支架。