Suppr超能文献

蛋白质能量景观中的对称性与受挫现象:一种近乎简并的情况解开了Rop二聚体折叠之谜。

Symmetry and frustration in protein energy landscapes: a near degeneracy resolves the Rop dimer-folding mystery.

作者信息

Levy Yaakov, Cho Samuel S, Shen Tongye, Onuchic José N, Wolynes Peter G

机构信息

Center for Theoretical Biological Physics, and Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2373-8. doi: 10.1073/pnas.0409572102. Epub 2005 Feb 8.

Abstract

Protein folding has become one of the best understood biochemical reactions from a kinetic viewpoint. The funneled energy landscape, a consequence of the minimal frustration achieved by evolution in sequences, explains how most proteins fold efficiently and robustly to their functional structure and allows robust prediction of folding kinetics. The folding of Rop (repressor of primer) dimer is exceptional because some of its mutants with a redesigned hydrophobic core both fold and unfold much faster than the WT protein, which seems to conflict with a simple funneled energy landscape for which topology mainly determines the kinetics. We propose that the mystery of Rop folding can be unraveled by assuming a double-funneled energy landscape on which there are two basins that correspond to distinct but related topological structures. Because of the near symmetry of the molecule, mutations can cause a conformational switch to a nearly degenerate yet distinct topology or lead to a mixture of both topologies. The topology predicted to have the lower free-energy barrier height for folding was further found by all-atom modeling to give a better structural fit for those mutants with the extreme folding and unfolding rates. Thus, the non-Hammond effects can be understood within energy-landscape theory if there are in fact two different but nearly degenerate structures for Rop. Mutations in symmetric and regular structures may give rise to frustration and thus result in degeneracy.

摘要

从动力学角度来看,蛋白质折叠已成为理解最为透彻的生化反应之一。漏斗状能量景观是序列进化实现最小受挫的结果,它解释了大多数蛋白质如何高效且稳健地折叠成其功能结构,并能对折叠动力学进行可靠预测。Rop(引物阻遏物)二聚体的折叠情况较为特殊,因为其一些重新设计疏水核心的突变体,其折叠和解折叠速度都比野生型蛋白快得多,这似乎与拓扑结构主要决定动力学的简单漏斗状能量景观相矛盾。我们提出,假设存在一种双漏斗状能量景观,其上有两个对应于不同但相关拓扑结构的盆地,就可以解开Rop折叠之谜。由于分子近乎对称,突变可导致构象转换为近乎简并但不同的拓扑结构,或导致两种拓扑结构的混合。通过全原子建模进一步发现,预测折叠时具有较低自由能垒高度的拓扑结构,能更好地拟合那些具有极快折叠和解折叠速率的突变体的结构。因此,如果Rop实际上存在两种不同但近乎简并的结构,那么非哈蒙德效应就能在能量景观理论中得到理解。对称且规则结构中的突变可能会导致受挫,从而导致简并。

相似文献

7
Evidence for the principle of minimal frustration in the evolution of protein folding landscapes.蛋白质折叠景观进化中最小挫折原则的证据。
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):E1627-E1632. doi: 10.1073/pnas.1613892114. Epub 2017 Feb 14.
9
Funneled energy landscape unifies principles of protein binding and evolution.漏斗形能量景观统一了蛋白质结合和进化的原理。
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27218-27223. doi: 10.1073/pnas.2013822117. Epub 2020 Oct 16.
10
Localizing Frustration in Proteins Using All-Atom Energy Functions.使用全原子能量函数定位蛋白质中的挫折感。
J Phys Chem B. 2019 May 30;123(21):4497-4504. doi: 10.1021/acs.jpcb.9b01545. Epub 2019 May 16.

引用本文的文献

3
Evolution avoids a pathological stabilizing interaction in the immune protein S100A9.演化避免了免疫蛋白 S100A9 中的病理性稳定相互作用。
Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2208029119. doi: 10.1073/pnas.2208029119. Epub 2022 Oct 4.
4
Side chain flexibility and the symmetry of protein homodimers.侧链柔性与蛋白质同源二聚体的对称性。
PLoS One. 2020 Jul 24;15(7):e0235863. doi: 10.1371/journal.pone.0235863. eCollection 2020.
6
Experimentally-driven protein structure modeling.基于实验的蛋白质结构建模。
J Proteomics. 2020 May 30;220:103777. doi: 10.1016/j.jprot.2020.103777. Epub 2020 Apr 5.
8
Sliding Mechanism at a Coiled-Coil Interface.卷曲螺旋界面的滑动机制。
Biophys J. 2019 Apr 2;116(7):1228-1238. doi: 10.1016/j.bpj.2019.02.026. Epub 2019 Mar 7.
10
On the folding of a structurally complex protein to its metastable active state.关于结构复杂的蛋白质折叠到其亚稳态活性状态。
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):1998-2003. doi: 10.1073/pnas.1708173115. Epub 2018 Jan 17.

本文引用的文献

4
Hydrophobic collapse in multidomain protein folding.多结构域蛋白质折叠中的疏水塌缩
Science. 2004 Sep 10;305(5690):1605-9. doi: 10.1126/science.1101176.
8
Theory of protein folding.蛋白质折叠理论
Curr Opin Struct Biol. 2004 Feb;14(1):70-5. doi: 10.1016/j.sbi.2004.01.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验