Singh Sharda P, Chen Tao, Chen Ling, Mei Nan, McLain Eric, Samokyszyn Victor, Thaden John J, Moore Martha M, Zimniak Piotr
Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
J Pharmacol Exp Ther. 2005 May;313(2):855-61. doi: 10.1124/jpet.104.080754. Epub 2005 Feb 8.
The lipid peroxidation product 4-hydroxynon-2-enal (4-HNE) is cytotoxic and genotoxic at superphysiological concentrations. To characterize the mechanism of action of 4-HNE, we assessed genotoxic damage by 4-HNE and by 4-HNE triacetate [4-HNE(Ac)(3)] using the mouse lymphoma assay that measures the mutant frequency in the Tk gene. As a strong electrophile, 4-HNE reacts readily with nucleophilic centers on cellular components. When added extracellularly, it may react preferentially with proteins in culture medium or on the cell surface and not reach deeper cellular targets such as nuclear DNA. Therefore, 4-HNE(Ac)(3), a protected form of 4-HNE that is metabolically converted to 4-HNE in cells (Neely MD, Amarnath V, Weitlauf C, and Montine TJ, Chem Res Toxicol 15:40-47, 2002), was assayed in addition to 4-HNE. When added in serum-containing medium, 4-HNE was not mutagenic in the mouse lymphoma assay up to 38 muM (cytotoxicity = 13%). In contrast, exposure to 4-HNE(Ac)(3), which mimics intracellular formation of 4-HNE, resulted in dose-dependent induction of mutations. At 17 muM 4-HNE(Ac)(3) (cytotoxicity = 33%), the mutant frequency was 719 x 10(-6) (>7-fold higher than the spontaneous mutant frequency). Loss of heterozygosity analysis in the Tk mutants revealed that the majority of mutations induced by 4-HNE(Ac)(3) resulted from clastogenic events affecting a large segment of the chromosome. The results indicate that, in the presence of serum that approximates physiological conditions, 4-HNE generated intracellularly but not extracellularly is a strong mutagen via a clastogenic action at concentrations that may occur during oxidative stress.
脂质过氧化产物4-羟基壬-2-烯醛(4-HNE)在超生理浓度下具有细胞毒性和遗传毒性。为了表征4-HNE的作用机制,我们使用测量Tk基因突变频率的小鼠淋巴瘤试验,评估了4-HNE和4-羟基壬-2-烯醛三乙酸酯[4-HNE(Ac)(3)]引起的遗传毒性损伤。作为一种强亲电试剂,4-HNE很容易与细胞成分上的亲核中心发生反应。当细胞外添加时,它可能优先与培养基或细胞表面的蛋白质发生反应,而无法到达更深层的细胞靶点,如核DNA。因此,除了4-HNE外,我们还检测了4-HNE(Ac)(3),它是4-HNE的一种受保护形式,在细胞内可代谢转化为4-HNE(Neely MD、Amarnath V、Weitlauf C和Montine TJ,《化学研究毒理学》15:40 - 47,2002年)。当在含血清的培养基中添加时,在小鼠淋巴瘤试验中,高达38 μM的4-HNE没有致突变性(细胞毒性 = 13%)。相比之下,暴露于模拟细胞内4-HNE形成的4-HNE(Ac)(3)会导致剂量依赖性的突变诱导。在17 μM的4-HNE(Ac)(3)(细胞毒性 = 33%)时,突变频率为719×10⁻⁶(比自发突变频率高7倍以上)。对Tk突变体的杂合性缺失分析表明,4-HNE(Ac)(3)诱导的大多数突变是由影响染色体大片段的致断裂事件引起的。结果表明,在接近生理条件的血清存在下,细胞内而非细胞外产生的4-HNE在氧化应激期间可能出现的浓度下,通过致断裂作用是一种强诱变剂。