Suppr超能文献

Evaluating the effect of a wavelet enhancement method in characterization of simulated lesions embedded in dense breast parenchyma.

作者信息

Costaridou L, Skiadopoulos S, Sakellaropoulos P, Likaki E, Kalogeropoulou C P, Panayiotakis G

机构信息

Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece.

出版信息

Eur Radiol. 2005 Aug;15(8):1615-22. doi: 10.1007/s00330-005-2640-1. Epub 2005 Feb 9.

Abstract

Presence of dense parenchyma in mammographic images masks lesions resulting in either missed detections or mischaracterizations, thus decreasing mammographic sensitivity and specificity. The aim of this study is evaluating the effect of a wavelet enhancement method on dense parenchyma for a lesion contour characterization task, using simulated lesions. The method is recently introduced, based on a two-stage process, locally adaptive denoising by soft-thresholding and enhancement by linear stretching. Sixty simulated low-contrast lesions of known image characteristics were generated and embedded in dense breast areas of normal mammographic images selected from the DDSM database. Evaluation was carried out by an observer performance comparative study between the processed and initial images. The task for four radiologists was to classify each simulated lesion with respect to contour sharpness/unsharpness. ROC analysis was performed. Combining radiologists' responses, values of the area under ROC curve (Az) were 0.93 (95% CI 0.89, 0.96) and 0.81 (CI 0.75, 0.86) for processed and initial images, respectively. This difference in Az values was statistically significant (Student's t-test, P<0.05), indicating the effectiveness of the enhancement method. The specific wavelet enhancement method should be tested for lesion contour characterization tasks in softcopy-based mammographic display environment using naturally occurring pathological lesions and normal cases.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验