Felici M, Filoche M, Straus C, Similowski T, Sapoval B
CNRS/PMC, Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau, France.
Respir Physiol Neurobiol. 2005 Feb 15;145(2-3):279-93. doi: 10.1016/j.resp.2004.10.012.
Gas exchange at the acinar level involves several physico-chemical phenomena within a complex geometry. A gas transport model, which takes into account both the diffusion into the acinus and the diffusion across the alveolar membrane, is used to understand gas mixing in realistic systems. It is first shown that the behaviour of the system, computed on model geometries in 3D, only depends on the topological structure of the acinus. Taking advantage of this property, a new efficient method based on random walks on a lattice is used to compute gas diffusion in structures taken from real morphological data. This approach shows that, at rest, the human acinus efficiency is only 30-40%. These results provide a new evidence of the existence of diffusional screening at the acinar level. This implies permanent spatial inhomogeneity of oxygen and carbon dioxide partial pressure. The notion of an "alveolar gas" is reinterpreted as a spatial average of the gas distribution. This model casts new light on the respiratory properties of other gas mixtures, such as helium-oxygen.
腺泡水平的气体交换涉及复杂几何结构内的多种物理化学现象。一种气体传输模型被用于理解实际系统中的气体混合情况,该模型同时考虑了气体向腺泡内的扩散以及穿过肺泡膜的扩散。首先表明,在三维模型几何结构上计算得到的系统行为仅取决于腺泡的拓扑结构。利用这一特性,一种基于晶格上随机游走的新的高效方法被用于计算取自真实形态学数据的结构中的气体扩散。该方法表明,在静息状态下,人类腺泡的效率仅为30% - 40%。这些结果为腺泡水平存在扩散筛选提供了新的证据。这意味着氧气和二氧化碳分压存在永久性的空间不均匀性。“肺泡气体”的概念被重新解释为气体分布的空间平均值。该模型为其他气体混合物(如氦氧混合气)的呼吸特性提供了新的见解。