Ritz-Gold C J, Gold C M, Brodie A F
Biochim Biophys Acta. 1979 Jul 10;547(1):1-17. doi: 10.1016/0005-2728(79)90090-2.
Trypsin treatment of solubilized coupling factor-latent ATPase from Mycobacterium phlei alters its subunit structure and functional properties. This coupling factor exhibits ATPase activity following trypsin treatment. Concurrently, both the ability of the enzyme to rebind to membranes depleted of coupling factor and its capacity for coupled phosphorylation are lost. The native alpha (64 000 dalton) subunit undergoes limited proteolytic digestion, and the delta (14 000 dalton) subunit is partially lost. During the course of tryptic proteolysis, the coupling factor molecule may exist in one of ten unique structural state (e.g. the native, ATPase-inactive molecule exists in the alpha alpha alpha state). Rigorous analysis of the experimental data by theoretical modeling provided information concerning the intermediate structural states leading to the fully ATPase-activated alpha" alpha" alpha" state under different conditions of trypsin treatment. The theoretical models of structure-function relationships that best-represented the experimental data predicted that the native coupling factor molecule contains three copies of the alpha (64 000 dalton) form of the alpha subunit, that the alpha" (58 000 dalton) alpha subunit species contributes maximally and the alpha' (61 000 dalton) form about half-maximally to ATPase activity, that membrane rebinding ability is proportional to the number of native alpha subunits in the enzyme, and that at least one native alpha subunit/molecule is required for full expression of coupled phosphorylation. These results indicate an essential role for the alpha subunit in the regulation of ATPase activity and in the ability of the solubilized coupling factor to rebind to depleted membranes.
用胰蛋白酶处理来自草分枝杆菌的可溶偶联因子-潜在ATP酶,会改变其亚基结构和功能特性。这种偶联因子在胰蛋白酶处理后表现出ATP酶活性。同时,该酶重新结合到已耗尽偶联因子的膜上的能力及其偶联磷酸化的能力丧失。天然的α(64000道尔顿)亚基经历有限的蛋白水解消化,δ(14000道尔顿)亚基部分丢失。在胰蛋白酶水解过程中,偶联因子分子可能以十种独特的结构状态之一存在(例如,天然的、无ATP酶活性的分子以ααα状态存在)。通过理论建模对实验数据进行严格分析,提供了有关在不同胰蛋白酶处理条件下导致完全ATP酶激活的α“α“α“状态的中间结构状态的信息。最能代表实验数据的结构-功能关系理论模型预测,天然偶联因子分子包含三个α亚基的α(64000道尔顿)形式的拷贝,α“(58000道尔顿)α亚基种类对ATP酶活性的贡献最大,α'(61000道尔顿)形式约为最大活性的一半,膜重新结合能力与酶中天然α亚基的数量成正比,并且完全表达偶联磷酸化至少需要一个天然α亚基/分子。这些结果表明α亚基在调节ATP酶活性以及可溶偶联因子重新结合到耗尽膜上的能力中起重要作用。