Henderson Alistair P, Barnes Martine L, Bleasdale Christine, Cameron Richard, Clegg William, Heath Sarah L, Lindstrom Andrew B, Rappaport Stephen M, Waidyanatha Suramya, Watson William P, Golding Bernard T
School of Natural Sciences--Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NEI 7RU, United Kingdom.
Chem Res Toxicol. 2005 Feb;18(2):265-70. doi: 10.1021/tx049781y.
S-Phenylmercapturic acid is a minor metabolite of benzene used as a biomarker for human benzene exposures. The reaction of intracellular glutathione with benzene oxide-oxepin, the initial metabolite of benzene, is presumed to give 1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which undergoes dehydration to S-phenylglutathione, the precursor of S-phenylmercapturic acid. To validate the proposed route to S-phenylglutathione, reactions of benzene oxide-oxepin with glutathione and other sulfur nucleophiles have been studied. The reaction of benzene oxide with an excess of aqueous sodium sulfide, followed by acetylation, gave bis-(6-trans-5-acetoxycyclohexa-1,3-dienyl)sulfide, the structure of which was proved by X-ray crystallography. Reactions of benzene oxide-oxepin in a 95:5 (v/v) mixture of phosphate buffer in D2O with (CD3)2SO were monitored by 1H NMR spectroscopy. In the absence of glutathione, the half-life of benzene oxide-oxepin was ca. 34 min at 25 degrees C and pD 7.0. The half-life was not affected in the range of 2-15 mM glutathione in the presence and absence of a commercial sample of human glutathione S-transferase (at pH 7.0, 8.0, 8.5, or 10.0). The adduct 1-(S-glutathionyl)-cyclohexa-3,5-diene-2-ol was identified in these reaction mixtures, especially at higher pH, by mass spectrometry and by its acid-catalyzed decomposition to S-phenylglutathione. Incubation of benzene oxide with N-acetyl-L-cysteine at 37 degrees C and pH 10.0 and subsequent mass spectrometric analysis of the mixture showed formation of pre-S-phenylmercapturic acid and the dehydration product, S-phenylmercapturic acid. The data validate the premise that benzene oxide-oxepin can be captured by glutathione to give (1R,2R)- and/or (1S,2S)-1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which dehydrate to S-phenylglutathione. The capture is a relatively inefficient process at pH 7 that is accelerated at higher pH. These studies account for the observation that the metabolism of benzene is dominated by the formation of phenol. The pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at pH 7 vs spontaneous rearrangement to phenol.
S-苯基巯基尿酸是苯的一种次要代谢产物,用作人体苯暴露的生物标志物。据推测,细胞内谷胱甘肽与苯的初始代谢产物氧化苯并氧杂环庚三烯反应生成1-(S-谷胱甘肽基)-环己-3,5-二烯-2-醇,该产物脱水生成S-苯基谷胱甘肽,即S-苯基巯基尿酸的前体。为了验证所提出的生成S-苯基谷胱甘肽的途径,研究了氧化苯并氧杂环庚三烯与谷胱甘肽及其他硫亲核试剂的反应。氧化苯与过量的硫化钠水溶液反应,然后进行乙酰化,得到双-(6-反式-5-乙酰氧基环己-1,3-二烯基)硫化物,其结构通过X射线晶体学得以证实。通过1H NMR光谱监测氧化苯并氧杂环庚三烯在D2O中的磷酸盐缓冲液与(CD3)2SO的95:5(v/v)混合物中的反应。在没有谷胱甘肽的情况下,氧化苯并氧杂环庚三烯在25℃和pD 7.0时的半衰期约为34分钟。在有和没有市售人谷胱甘肽S-转移酶样品的情况下(在pH 7.0、8.0、8.5或10.0),2-15 mM谷胱甘肽范围内半衰期不受影响。通过质谱分析以及其酸催化分解为S-苯基谷胱甘肽,在这些反应混合物中,尤其是在较高pH值下,鉴定出加合物1-(S-谷胱甘肽基)-环己-3,5-二烯-2-醇。在37℃和pH 10.0条件下,将氧化苯与N-乙酰-L-半胱氨酸孵育,随后对混合物进行质谱分析,结果表明形成了前S-苯基巯基尿酸和脱水产物S-苯基巯基尿酸。这些数据验证了以下前提:氧化苯并氧杂环庚三烯可被谷胱甘肽捕获,生成(1R,2R)-和/或(1S,2S)-1-(S-谷胱甘肽基)-环己-3,5-二烯-2-醇,后者脱水生成S-苯基谷胱甘肽。在pH 7时,捕获过程相对低效,而在较高pH时会加速。这些研究解释了苯代谢以苯酚形成为主的观察结果。由于在pH 7时谷胱甘肽捕获氧化苯的效率较低,相对于自发重排为苯酚,导致S-苯基巯基尿酸生成的途径必然是次要的。