Dept Pharmacology & Toxicology, College of Pharmacy, Southwest Environmental Health Sciences Center, University of Arizona, 1703 E Mabel Street, Tucson, AZ 85721-0207, USA.
Chem Biol Interact. 2010 Mar 19;184(1-2):201-6. doi: 10.1016/j.cbi.2009.12.025. Epub 2009 Dec 29.
Metabolism is a prerequisite for the development of benzene-mediated myelotoxicity. Benzene is initially metabolized via cytochromes P450 (primarily CYP2E1 in liver) to benzene-oxide, which subsequently gives rise to a number of secondary products. Benzene-oxide equilibrates spontaneously with the corresponding oxepine valence tautomer, which can ring open to yield a reactive alpha,beta-unsaturated aldehyde, trans-trans-muconaldehyde (MCA). Further reduction or oxidation of MCA gives rise to either 6-hydroxy-trans-trans-2,4-hexadienal or 6-hydroxy-trans-trans-2,4-hexadienoic acid. Both MCA and the hexadienal metabolite are myelotoxic in animal models. Alternatively, benzene-oxide can undergo conjugation with glutathione (GSH), resulting in the eventual formation and urinary excretion of S-phenylmercapturic acid. Benzene-oxide is also a substrate for epoxide hydrolase, which catalyzes the formation of benzene dihydrodiol, itself a substrate for dihydrodiol dehydrogenase, producing catechol. Finally, benzene-oxide spontaneously rearranges to phenol, which subsequently undergoes either conjugation (glucuronic acid or sulfate) or oxidation. The latter reaction, catalyzed by cytochromes P450, gives rise to hydroquinone (HQ) and 1,2,4-benzene triol. Co-administration of phenol and HQ reproduces the myelotoxic effects of benzene in animal models. The two diphenolic metabolites of benzene, catechol and HQ undergo further oxidation to the corresponding ortho-(1,2-), or para-(1,4-)benzoquinones (BQ), respectively. Trapping of 1,4-BQ with GSH gives rise to a variety of HQ-GSH conjugates, several of which are hematotoxic when administered to rats. Thus, benzene-oxide gives rise to a cascade of metabolites that exhibit biological reactivity, and that provide a plausible metabolic basis for benzene-mediated myelotoxicity. Benzene-oxide itself is remarkably stable, and certainly capable of translocating from its primary site of formation in the liver to the bone marrow. However, therein lies the challenge, for although there exists a plethora of information on the metabolism of benzene, and the fate of benzene-oxide, there is a paucity of data on the presence, concentration, and persistence of benzene metabolites in bone marrow. The major metabolites in bone marrow of mice exposed to 50 ppm [(3)H]benzene are muconic acid, and glucuronide and/or sulfate conjugates of phenol, HQ, and catechol. Studies with [(14)C/(13)C]benzene revealed the presence in bone marrow of protein adducts of benzene-oxide, 1,4-BQ, and 1,4-BQ, the relative abundance of which was both dose and species dependent. In particular, histones are bone marrow targets of [(14)C]benzene, although the identity of the reactive metabolite(s) giving rise to these adducts remain unknown. Finally, hematotoxic HQ-GSH conjugates are present in the bone marrow of rats receiving the HQ/phenol combination. In summary, although the fate of benzene-oxide is known in remarkable detail, coupling this information to the site, and mechanism of action, remains to be established.
代谢是苯介导的骨髓毒性发展的前提。苯最初通过细胞色素 P450(主要在肝脏中为 CYP2E1)代谢为苯氧化物,随后产生许多次级产物。苯氧化物自发与相应的氧杂环庚烷价键互变异构体平衡,后者可以开环生成反应性α,β-不饱和醛,反式-反式-粘康醛(MCA)。MCA 的进一步还原或氧化生成 6-羟基-反式-反式-2,4-己二烯醛或 6-羟基-反式-反式-2,4-己二烯酸。MCA 和己二烯醛代谢物在动物模型中均具有骨髓毒性。或者,苯氧化物可以与谷胱甘肽(GSH)结合,最终形成和尿液排泄 S-苯巯基尿酸。苯氧化物也是环氧化物水解酶的底物,该酶催化苯二氢二醇的形成,苯二氢二醇本身是二氢二醇脱氢酶的底物,生成儿茶酚。最后,苯氧化物自发重排为苯酚,随后可发生共轭(葡萄糖醛酸或硫酸盐)或氧化。后者反应由细胞色素 P450 催化,生成对苯二酚(HQ)和 1,2,4-苯三醇。苯酚和 HQ 的共给药在动物模型中再现了苯的骨髓毒性作用。苯的两种二酚代谢物儿茶酚和 HQ 进一步氧化生成相应的邻(1,2-)或对(1,4-)苯醌(BQ)。GSH 与 1,4-BQ 结合生成多种 HQ-GSH 缀合物,其中几种在给予大鼠时具有血液毒性。因此,苯氧化物产生了一系列具有生物反应性的代谢物,为苯介导的骨髓毒性提供了合理的代谢基础。苯氧化物本身非常稳定,肯定能够从其在肝脏中的主要形成部位转移到骨髓。然而,这就是挑战所在,尽管有大量关于苯代谢和苯氧化物命运的信息,但关于骨髓中苯代谢物的存在、浓度和持久性的数据却很少。暴露于 50 ppm [(3)H]苯的小鼠骨髓中的主要代谢物是粘康酸以及苯酚、HQ 和儿茶酚的葡萄糖醛酸和/或硫酸盐缀合物。用 [(14)C/(13)C]苯进行的研究表明,骨髓中存在苯氧化物、1,4-BQ 和 1,4-BQ 的蛋白加合物,其相对丰度既依赖于剂量又依赖于物种。特别是,组蛋白是骨髓中 [(14)C]苯的靶标,尽管导致这些加合物的反应性代谢物的身份仍不清楚。最后,给予 HQ/苯酚组合的大鼠骨髓中存在血液毒性 HQ-GSH 缀合物。总之,尽管苯氧化物的命运已经得到了非常详细的了解,但将这些信息与部位和作用机制联系起来仍有待确定。