Suppr超能文献

小分子和基于核酸的药物在脂质体中的包封。

Entrapment of small molecules and nucleic acid-based drugs in liposomes.

作者信息

Fenske David B, Cullis Pieter R

机构信息

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Methods Enzymol. 2005;391:7-40. doi: 10.1016/S0076-6879(05)91001-X.

Abstract

In the past two decades there have been major advances in the development of liposomal drug delivery systems suitable for applications ranging from cancer chemotherapy to gene therapy. In general, an optimized system consists of liposomes with a diameter of approximately 100 nm that possess a long circulation lifetime (half-life >5 h). Such liposomes will circulate sufficiently long to take advantage of a phenomenon known as disease site targeting, wherein liposomes accumulate at sites of disease, such as tumors, as a result of the leaky vasculature and reduced blood flow exhibited by the diseased tissue. The extended circulation lifetime is achieved by the use of saturated lipids and cholesterol or by the presence of PEG-containing lipids. This chapter will focus on the methodology required for the generation of two very different classes of liposomal carrier systems: those containing conventional small molecular weight (usually anticancer) drugs and those containing larger genetic (oligonucleotide and plasmid DNA) drugs. Initially, we will examine the encapsulation of small, weakly basic drugs within liposomes in response to transmembrane pH and ion gradients. Procedures will be described for the formation of large unilamellar vesicles (LUVs) by extrusion methods and for loading anticancer drugs into LUVs in response to transmembrane pH gradients. Three methods for generating transmembrane pH gradients will be discussed: (1) the use of intravesicular citrate buffer, (2) the use of transmembrane ammonia gradients, and (3) ionophore-mediated generation of pH gradients via transmembrane ion gradients. We will also discuss the loading of doxorubicin into LUVs by formation of drug-metal ion complexes. Different approaches are required for encapsulating macromolecules within LUVs. Plasmid DNA can be encapsulated by a detergent-dialysis approach, giving rise to stabilized plasmid-lipid particles, vectors with potential for systemic gene delivery. Antisense oligonucleotides can be spontaneously entrapped upon electrostatic interaction with ethanol-destabilized cationic liposomes, giving rise to small multilamellar systems known as stabilized antisense-lipid particles (SALP). These vectors have the potential to regulate gene expression.

摘要

在过去二十年中,适用于从癌症化疗到基因治疗等各种应用的脂质体药物递送系统取得了重大进展。一般来说,优化后的系统由直径约为100纳米的脂质体组成,这些脂质体具有较长的循环寿命(半衰期>5小时)。此类脂质体将循环足够长的时间,以利用一种称为疾病部位靶向的现象,即由于病变组织表现出的血管渗漏和血流减少,脂质体在疾病部位(如肿瘤)积聚。通过使用饱和脂质和胆固醇或通过存在含聚乙二醇的脂质来实现延长的循环寿命。本章将重点介绍生成两类截然不同的脂质体载体系统所需的方法:一类包含传统小分子(通常为抗癌)药物,另一类包含较大的基因(寡核苷酸和质粒DNA)药物。首先,我们将研究在跨膜pH和离子梯度作用下,小分子弱碱性药物在脂质体内的包封情况。将描述通过挤压法形成大单层囊泡(LUVs)以及响应跨膜pH梯度将抗癌药物加载到LUVs中的程序。将讨论产生跨膜pH梯度的三种方法:(1)使用囊泡内柠檬酸盐缓冲液,(2)使用跨膜氨梯度,以及(3)通过跨膜离子梯度由离子载体介导产生pH梯度。我们还将讨论通过形成药物 - 金属离子络合物将阿霉素加载到LUVs中的情况。将大分子包封在LUVs中需要不同的方法。质粒DNA可以通过去污剂透析法进行包封,产生稳定的质粒 - 脂质颗粒,这是具有全身基因递送潜力的载体。反义寡核苷酸可以在与乙醇去稳定化的阳离子脂质体发生静电相互作用时自发包封,产生称为稳定化反义脂质颗粒(SALP)的小多层系统。这些载体具有调节基因表达的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验