Suppr超能文献

抗生素曲古抑菌素GA IV的膜活性机制:由肽浓度控制的双态转变

Mechanism of membrane activity of the antibiotic trichogin GA IV: a two-state transition controlled by peptide concentration.

作者信息

Mazzuca Claudia, Stella Lorenzo, Venanzi Mariano, Formaggio Fernando, Toniolo Claudio, Pispisa Basilio

机构信息

Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Rome, Italy.

出版信息

Biophys J. 2005 May;88(5):3411-21. doi: 10.1529/biophysj.104.056077. Epub 2005 Feb 18.

Abstract

Synthetic fluorescent analogs of the natural lipopeptide trichogin GA IV were used to investigate the peptide position and orientation in model membranes. A translocation assay based on Forster energy transfer indicates that trichogin is associated to both the outer and inner leaflet of the membrane, even at low concentration, when it is not active. Fluorescence quenching measurements, performed by using water soluble quenchers and quenchers positioned in the membrane at different depths, indicate that at low membrane-bound peptide/lipid ratios trichogin lies close to the region of polar headgroups. By increasing peptide concentration until membrane leakage takes place, a cooperative transition occurs and a significant fraction of the peptide becomes deeply buried into the bilayer. Remarkably, this change in peptide position is strictly coupled with peptide aggregation. Therefore, the mechanism of trichogin action can be envisaged as based on a two-state transition controlled by peptide concentration. One state is the monomeric, surface bound and inactive peptide, and the other state is a buried, aggregated form, which is responsible for membrane leakage and bioactivity.

摘要

天然脂肽曲古抑菌素GA IV的合成荧光类似物被用于研究该肽在模型膜中的位置和取向。基于福斯特能量转移的转位测定表明,即使在低浓度且无活性时,曲古抑菌素也与膜的外层和内层小叶相关联。通过使用水溶性猝灭剂和位于膜中不同深度的猝灭剂进行的荧光猝灭测量表明,在低膜结合肽/脂质比时,曲古抑菌素靠近极性头部基团区域。通过增加肽浓度直至发生膜泄漏,会发生协同转变,并且相当一部分肽会深深埋入双层膜中。值得注意的是,肽位置的这种变化与肽聚集密切相关。因此,曲古抑菌素的作用机制可以设想为基于由肽浓度控制的双态转变。一种状态是单体、表面结合且无活性的肽,另一种状态是埋入的、聚集的形式,它负责膜泄漏和生物活性。

相似文献

1
Mechanism of membrane activity of the antibiotic trichogin GA IV: a two-state transition controlled by peptide concentration.
Biophys J. 2005 May;88(5):3411-21. doi: 10.1529/biophysj.104.056077. Epub 2005 Feb 18.
3
The antimicrobial peptide trichogin and its interaction with phospholipid membranes.
Eur J Biochem. 1999 Dec;266(3):1021-8. doi: 10.1046/j.1432-1327.1999.00945.x.
6
Analogs of the antimicrobial peptide trichogin having opposite membrane properties.
Eur J Biochem. 2001 Feb;268(3):703-12. doi: 10.1046/j.1432-1327.2001.01922.x.
8
Multinuclear solid-state-NMR and FT-IR-absorption investigations on lipid/trichogin bilayers.
Chem Biodivers. 2007 Jun;4(6):1200-18. doi: 10.1002/cbdv.200790105.
9
Location and aggregation of the spin-labeled peptide trichogin GA IV in a phospholipid membrane as revealed by pulsed EPR.
Biophys J. 2006 Aug 15;91(4):1532-40. doi: 10.1529/biophysj.105.075887. Epub 2006 Jun 2.
10
Membrane thickness and the mechanism of action of the short peptaibol trichogin GA IV.
Biochim Biophys Acta. 2013 Mar;1828(3):1013-24. doi: 10.1016/j.bbamem.2012.11.033. Epub 2012 Dec 5.

引用本文的文献

1
Azulene-A Bright Core for Sensing and Imaging.
Molecules. 2021 Jan 12;26(2):353. doi: 10.3390/molecules26020353.
2
Biophysical approaches for exploring lipopeptide-lipid interactions.
Biochimie. 2020 Mar;170:173-202. doi: 10.1016/j.biochi.2020.01.009. Epub 2020 Jan 21.
3
Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy.
J Am Chem Soc. 2019 Dec 11;141(49):19389-19396. doi: 10.1021/jacs.9b09813. Epub 2019 Nov 27.
4
Direct Enzymatic Synthesis of a Deep-Blue Fluorescent Noncanonical Amino Acid from Azulene and Serine.
Chembiochem. 2020 Jan 15;21(1-2):80-83. doi: 10.1002/cbic.201900497. Epub 2019 Nov 18.
6
Structural Behavior of the Peptaibol Harzianin HK VI in a DMPC Bilayer: Insights from MD Simulations.
Biophys J. 2017 Jun 20;112(12):2602-2614. doi: 10.1016/j.bpj.2017.05.019.
7
Painting proteins blue: β-(1-azulenyl)-L-alanine as a probe for studying protein-protein interactions.
Chem Commun (Camb). 2013 Jan 18;49(5):490-2. doi: 10.1039/c2cc37550h.
9
Fluctuations and the rate-limiting step of peptide-induced membrane leakage.
Biophys J. 2010 Sep 22;99(6):1791-800. doi: 10.1016/j.bpj.2010.07.010.
10
A novel technique to study pore-forming peptides in a natural membrane.
Eur Biophys J. 2007 Sep;36(7):771-8. doi: 10.1007/s00249-007-0152-4. Epub 2007 Mar 16.

本文引用的文献

1
Phosphatidylcholine: cholesterol phase diagrams.
Biophys J. 1992 Oct;63(4):1176-81. doi: 10.1016/S0006-3495(92)81681-8.
2
Anti-microbial peptides: from invertebrates to vertebrates.
Immunol Rev. 2004 Apr;198:169-84. doi: 10.1111/j.0105-2896.2004.0124.x.
3
Cationic antimicrobial peptides: update of clinical development.
J Intern Med. 2004 Apr;255(4):519-20. doi: 10.1046/j.1365-2796.2003.01278.x.
4
Energetics of pore formation induced by membrane active peptides.
Biochemistry. 2004 Mar 30;43(12):3590-9. doi: 10.1021/bi036153r.
7
Trichogin: a paradigm for lipopeptaibols.
J Pept Sci. 2003 Nov-Dec;9(11-12):679-89. doi: 10.1002/psc.500.
10
Sequence motifs, polar interactions and conformational changes in helical membrane proteins.
Curr Opin Struct Biol. 2003 Aug;13(4):412-7. doi: 10.1016/s0959-440x(03)00102-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验