Hebert Benedict, Costantino Santiago, Wiseman Paul W
Department of Physics and Department of Chemistry, McGill University, Montreal, Quebec, Canada.
Biophys J. 2005 May;88(5):3601-14. doi: 10.1529/biophysj.104.054874. Epub 2005 Feb 18.
We introduce a new extension of image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS) that relies on complete analysis of both the temporal and spatial correlation lags for intensity fluctuations from a laser-scanning microscopy image series. This new approach allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) for fluorescently labeled membrane proteins in living cells through monitoring of the time evolution of the full space-time correlation function. By using filtering in Fourier space to remove frequencies associated with immobile components, we are able to measure the protein transport even in the presence of a large fraction (>90%) of immobile species. We present the background theory, computer simulations, and analysis of measurements on fluorescent microspheres to demonstrate proof of principle, capabilities, and limitations of the method. We demonstrate mapping of flow vectors for mixed samples containing fluorescent microspheres with different emission wavelengths using space time image cross-correlation. We also present results from two-photon laser-scanning microscopy studies of alpha-actinin/enhanced green fluorescent protein fusion constructs at the basal membrane of living CHO cells. Using space-time image correlation spectroscopy (STICS), we are able to measure protein fluxes with magnitudes of mum/min from retracting lamellar regions and protrusions for adherent cells. We also demonstrate the measurement of correlated directed flows (magnitudes of mum/min) and diffusion of interacting alpha5 integrin/enhanced cyan fluorescent protein and alpha-actinin/enhanced yellow fluorescent protein within living CHO cells. The STICS method permits us to generate complete transport maps of proteins within subregions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements.
我们介绍了图像相关光谱法(ICS)和图像互相关光谱法(ICCS)的一种新扩展,该扩展依赖于对激光扫描显微镜图像序列中强度波动的时间和空间相关滞后进行全面分析。这种新方法能够通过监测全时空相关函数的时间演化,测量活细胞中荧光标记膜蛋白的扩散系数和速度矢量(大小和方向)。通过在傅里叶空间中进行滤波以去除与固定成分相关的频率,即使存在很大比例(>90%)的固定物种,我们也能够测量蛋白质转运。我们介绍了背景理论、计算机模拟以及对荧光微球测量的分析,以证明该方法的原理、能力和局限性。我们展示了使用时空图像互相关对包含不同发射波长荧光微球的混合样品进行流矢量映射。我们还展示了对活CHO细胞基底膜处α - 肌动蛋白/增强型绿色荧光蛋白融合构建体进行双光子激光扫描显微镜研究的结果。使用时空图像相关光谱法(STICS),我们能够测量贴壁细胞回缩片状区域和突起处蛋白质通量,其大小为μm/min。我们还展示了对活CHO细胞内相互作用的α5整合素/增强型青色荧光蛋白和α - 肌动蛋白/增强型黄色荧光蛋白的相关定向流(大小为μm/min)和扩散的测量。即使蛋白质浓度过高而无法进行单粒子跟踪测量,STICS方法也允许我们生成基底膜子区域内蛋白质的完整转运图谱。