Suppr超能文献

时间分辨图像相关光谱中的采样效应、噪声和光漂白。

Sampling effects, noise, and photobleaching in temporal image correlation spectroscopy.

作者信息

Kolin David L, Costantino Santiago, Wiseman Paul W

机构信息

Department of Chemistry, and Department of Physics, McGill University, Montreal, Canada.

出版信息

Biophys J. 2006 Jan 15;90(2):628-39. doi: 10.1529/biophysj.105.072322. Epub 2005 Oct 28.

Abstract

We present an extensive investigation of the accuracy and precision of temporal image correlation spectroscopy (TICS). Using simulations of laser scanning microscopy image time series, we investigate the effect of spatiotemporal sampling, particle density, noise, sampling frequency, and photobleaching of fluorophores on the recovery of transport coefficients and number densities by TICS. We show that the recovery of transport coefficients is usually limited by spatial sampling, while the measurement of accurate number densities is restricted by background noise in an image series. We also demonstrate that photobleaching of the fluorophore causes a consistent overestimation of diffusion coefficients and flow rates, and a severe underestimation of number densities. We derive a bleaching correction equation that removes both of these biases when used to fit temporal autocorrelation functions, without increasing the number of fit parameters. Finally, we image the basal membrane of a CHO cell with EGFP/alpha-actinin, using two-photon microscopy, and analyze a subregion of this series using TICS and apply the bleaching correction. We show that the photobleaching correction can be determined simply by using the average image intensities from the time series, and we use the simulations to provide good estimates of the accuracy and precision of the number density and transport coefficients measured with TICS.

摘要

我们对时间分辨图像相关光谱学(TICS)的准确性和精确性进行了广泛研究。通过对激光扫描显微镜图像时间序列的模拟,我们研究了时空采样、粒子密度、噪声、采样频率以及荧光团的光漂白对TICS恢复输运系数和数密度的影响。我们表明,输运系数的恢复通常受空间采样限制,而准确数密度的测量则受图像序列中的背景噪声限制。我们还证明,荧光团的光漂白会导致扩散系数和流速持续高估,以及数密度严重低估。我们推导了一个漂白校正方程,该方程在用于拟合时间自相关函数时可消除这两种偏差,且不增加拟合参数的数量。最后,我们使用双光子显微镜对表达EGFP/α - 肌动蛋白的CHO细胞的基底膜进行成像,并使用TICS分析该序列的一个子区域并应用漂白校正。我们表明,通过使用时间序列的平均图像强度即可简单地确定光漂白校正,并且我们利用模拟对用TICS测量的数密度和输运系数的准确性和精确性提供了良好估计。

相似文献

1
Sampling effects, noise, and photobleaching in temporal image correlation spectroscopy.
Biophys J. 2006 Jan 15;90(2):628-39. doi: 10.1529/biophysj.105.072322. Epub 2005 Oct 28.
3
k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics.
Biophys J. 2006 Oct 15;91(8):3061-75. doi: 10.1529/biophysj.106.082768. Epub 2006 Jul 21.
4
Accuracy and dynamic range of spatial image correlation and cross-correlation spectroscopy.
Biophys J. 2005 Aug;89(2):1251-60. doi: 10.1529/biophysj.104.057364. Epub 2005 May 27.
7
Effects of organelle shape on fluorescence recovery after photobleaching.
Biophys J. 2005 Sep;89(3):1482-92. doi: 10.1529/biophysj.104.057885. Epub 2005 Jun 10.
8
Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure.
Biophys J. 2005 May;88(5):L33-6. doi: 10.1529/biophysj.105.061788. Epub 2005 Mar 25.
10
Spatial Fourier analysis of video photobleaching measurements. Principles and optimization.
Biophys J. 1991 Aug;60(2):360-8. doi: 10.1016/S0006-3495(91)82061-6.

引用本文的文献

2
The LDL receptor is regulated by membrane cholesterol as revealed by fluorescence fluctuation analysis.
Biophys J. 2023 Sep 19;122(18):3783-3797. doi: 10.1016/j.bpj.2023.08.005. Epub 2023 Aug 9.
3
Rapid ensemble measurement of protein diffusion and probe blinking dynamics in cells.
Biophys Rep (N Y). 2021 Sep 3;1(2):100015. doi: 10.1016/j.bpr.2021.100015. eCollection 2021 Dec 8.
4
Hetero-pentamerization determines mobility and conductance of Glycine receptor α3 splice variants.
Cell Mol Life Sci. 2022 Oct 5;79(11):540. doi: 10.1007/s00018-022-04506-9.
6
Bleach correction ImageJ plugin for compensating the photobleaching of time-lapse sequences.
F1000Res. 2020 Dec 21;9:1494. doi: 10.12688/f1000research.27171.1. eCollection 2020.
7
Raster Image Correlation Spectroscopy Performance Evaluation.
Biophys J. 2019 Nov 19;117(10):1900-1914. doi: 10.1016/j.bpj.2019.09.045. Epub 2019 Oct 10.
8
Estimation of diffusion constants from single molecular measurement without explicit tracking.
BMC Syst Biol. 2018 Apr 11;12(Suppl 1):15. doi: 10.1186/s12918-018-0526-5.
9
Netrin-1-Regulated Distribution of UNC5B and DCC in Live Cells Revealed by TICCS.
Biophys J. 2016 Feb 2;110(3):623-634. doi: 10.1016/j.bpj.2015.12.022.
10

本文引用的文献

1
Accuracy and dynamic range of spatial image correlation and cross-correlation spectroscopy.
Biophys J. 2005 Aug;89(2):1251-60. doi: 10.1529/biophysj.104.057364. Epub 2005 May 27.
2
Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure.
Biophys J. 2005 May;88(5):L33-6. doi: 10.1529/biophysj.105.061788. Epub 2005 Mar 25.
4
Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy.
J Cell Sci. 2004 Nov 1;117(Pt 23):5521-34. doi: 10.1242/jcs.01416. Epub 2004 Oct 12.
5
6
Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias.
Biophys J. 2003 Mar;84(3):2030-42. doi: 10.1016/S0006-3495(03)75011-5.
7
The standard deviation in fluorescence correlation spectroscopy.
Biophys J. 2001 Jun;80(6):2987-99. doi: 10.1016/S0006-3495(01)76264-9.
8
Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy.
Biophys J. 2001 May;80(5):2396-408. doi: 10.1016/S0006-3495(01)76209-1.
9
Two-photon image correlation spectroscopy and image cross-correlation spectroscopy.
J Microsc. 2000 Oct;200(Pt 1):14-25. doi: 10.1046/j.1365-2818.2000.00736.x.
10
An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells.
Science. 2000 Mar 3;287(5458):1652-5. doi: 10.1126/science.287.5458.1652.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验