Maurus Robert, Begum Anjuman, Kuo Hsin-Hen, Racaza Andrew, Numao Shin, Andersen Carsten, Tams Jeppe W, Vind Jesper, Overall Christopher M, Withers Stephen G, Brayer Gary D
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
Protein Sci. 2005 Mar;14(3):743-55. doi: 10.1110/ps.041079305.
The mechanism of allosteric activation of alpha-amylase by chloride has been studied through structural and kinetic experiments focusing on the chloride-dependent N298S variant of human pancreatic alpha-amylase (HPA) and a chloride-independent TAKA-amylase. Kinetic analysis of the HPA variant clearly demonstrates the pronounced activating effect of chloride ion binding on reaction rates and its effect on the pH-dependence of catalysis. Structural alterations observed in the N298S variant upon chloride ion binding suggest that the chloride ion plays a variety of roles that serve to promote catalysis. One of these is having a strong influence on the positioning of the acid/base catalyst residue E233. Absence of chloride ion results in multiple conformations for this residue and unexpected enzymatic products. Chloride ion and N298 also appear to stabilize a helical region of polypeptide chain from which projects the flexible substrate binding loop unique to chloride-dependent alpha-amylases. This structural feature also serves to properly orient the catalytically essential residue D300. Comparative analyses show that the chloride-independent alpha-amylases compensate for the absence of bound chloride by substituting a hydrophobic core, altering the manner in which substrate interactions are made and shifting the placement of N298. These evolutionary differences presumably arise in response to alternative operating environments or the advantage gained in a particular product profile. Attempts to engineer chloride-dependence into the chloride-independent TAKA-amylase point out the complexity of this system, and the fact that a multitude of factors play a role in binding chloride ion in the chloride-dependent alpha-amylases.
通过结构和动力学实验,对氯离子对α-淀粉酶的变构激活机制进行了研究,这些实验聚焦于人类胰腺α-淀粉酶(HPA)的氯离子依赖性N298S变体和非氯离子依赖性的TAKA-淀粉酶。对HPA变体的动力学分析清楚地表明了氯离子结合对反应速率的显著激活作用及其对催化pH依赖性的影响。在氯离子结合后N298S变体中观察到的结构改变表明,氯离子发挥着多种促进催化的作用。其中之一是对酸碱催化剂残基E233的定位有很大影响。没有氯离子会导致该残基出现多种构象和意外的酶促产物。氯离子和N298似乎还稳定了多肽链的一个螺旋区域,氯离子依赖性α-淀粉酶特有的柔性底物结合环从该区域伸出。这一结构特征也有助于正确定位催化必需残基D300。比较分析表明,非氯离子依赖性α-淀粉酶通过取代疏水核心、改变底物相互作用的方式以及改变N298的位置来弥补未结合氯离子的情况。这些进化差异可能是对不同的操作环境或特定产物谱中获得的优势做出的反应。试图将氯离子依赖性引入非氯离子依赖性的TAKA-淀粉酶中,这指出了该系统的复杂性,以及在氯离子依赖性α-淀粉酶中,多种因素在结合氯离子方面发挥作用这一事实。