Duch Włodzisław
Department of Informatics, Nicholaus Copernicus University, 87-100 Toruń, Poland.
IEEE Trans Neural Netw. 2005 Jan;16(1):10-23. doi: 10.1109/TNN.2004.836200.
Probability that a crisp logical rule applied to imprecise input data is true may be computed using fuzzy membership function (MF). All reasonable assumptions about input uncertainty distributions lead to MFs of sigmoidal shape. Convolution of several inputs with uniform uncertainty leads to bell-shaped Gaussian-like uncertainty functions. Relations between input uncertainties and fuzzy rules are systematically explored and several new types of MFs discovered. Multilayered perceptron (MLP) networks are shown to be a particular implementation of hierarchical sets of fuzzy threshold logic rules based on sigmoidal MFs. They are equivalent to crisp logical networks applied to input data with uncertainty. Leaving fuzziness on the input side makes the networks or the rule systems easier to understand. Practical applications of these ideas are presented for analysis of questionnaire data and gene expression data.
应用于不精确输入数据的清晰逻辑规则为真的概率可以使用模糊隶属函数(MF)来计算。关于输入不确定性分布的所有合理假设都会导致呈S形的MF。几个具有均匀不确定性的输入进行卷积会导致呈钟形的类似高斯的不确定性函数。系统地探索了输入不确定性与模糊规则之间的关系,并发现了几种新型的MF。多层感知器(MLP)网络被证明是基于S形MF的分层模糊阈值逻辑规则集的一种特殊实现。它们等同于应用于具有不确定性的输入数据的清晰逻辑网络。在输入端保留模糊性会使网络或规则系统更易于理解。针对问卷数据和基因表达数据的分析展示了这些思想的实际应用。