Al-Daraiseh Ahmad, Kaylani Assem, Georgiopoulos Michael, Mollaghasemi Mansooreh, Wu Annie S, Anagnostopoulos Georgios
School of EECS, University of Central Florida, Orlando, FL 32816-2786, United States.
Neural Netw. 2007 Oct;20(8):874-92. doi: 10.1016/j.neunet.2007.05.006. Epub 2007 Jun 3.
This paper focuses on the evolution of Fuzzy ARTMAP neural network classifiers, using genetic algorithms, with the objective of improving generalization performance (classification accuracy of the ART network on unseen test data) and alleviating the ART category proliferation problem (the problem of creating more than necessary ART network categories to solve a classification problem). We refer to the resulting architecture as GFAM. We demonstrate through extensive experimentation that GFAM exhibits good generalization and is of small size (creates few ART categories), while consuming reasonable computational effort. In a number of classification problems, GFAM produces the optimal classifier. Furthermore, we compare the performance of GFAM with other competitive ARTMAP classifiers that have appeared in the literature and addressed the category proliferation problem in ART. We illustrate that GFAM produces improved results over these architectures, as well as other competitive classifiers.
本文聚焦于使用遗传算法的模糊ARTMAP神经网络分类器的演变,目标是提高泛化性能(ART网络对未见测试数据的分类准确率)并缓解ART类别增殖问题(为解决分类问题创建不必要的过多ART网络类别的问题)。我们将由此产生的架构称为GFAM。我们通过大量实验证明,GFAM具有良好的泛化能力且规模较小(创建的ART类别较少),同时消耗合理的计算量。在许多分类问题中,GFAM能产生最优分类器。此外,我们将GFAM的性能与文献中出现的其他有竞争力的ARTMAP分类器进行比较,这些分类器也解决了ART中的类别增殖问题。我们表明,GFAM相对于这些架构以及其他有竞争力的分类器能产生更好的结果。