Suppr超能文献

GFAM:不断演进的模糊ARTMAP神经网络。

GFAM: evolving Fuzzy ARTMAP neural networks.

作者信息

Al-Daraiseh Ahmad, Kaylani Assem, Georgiopoulos Michael, Mollaghasemi Mansooreh, Wu Annie S, Anagnostopoulos Georgios

机构信息

School of EECS, University of Central Florida, Orlando, FL 32816-2786, United States.

出版信息

Neural Netw. 2007 Oct;20(8):874-92. doi: 10.1016/j.neunet.2007.05.006. Epub 2007 Jun 3.

Abstract

This paper focuses on the evolution of Fuzzy ARTMAP neural network classifiers, using genetic algorithms, with the objective of improving generalization performance (classification accuracy of the ART network on unseen test data) and alleviating the ART category proliferation problem (the problem of creating more than necessary ART network categories to solve a classification problem). We refer to the resulting architecture as GFAM. We demonstrate through extensive experimentation that GFAM exhibits good generalization and is of small size (creates few ART categories), while consuming reasonable computational effort. In a number of classification problems, GFAM produces the optimal classifier. Furthermore, we compare the performance of GFAM with other competitive ARTMAP classifiers that have appeared in the literature and addressed the category proliferation problem in ART. We illustrate that GFAM produces improved results over these architectures, as well as other competitive classifiers.

摘要

本文聚焦于使用遗传算法的模糊ARTMAP神经网络分类器的演变,目标是提高泛化性能(ART网络对未见测试数据的分类准确率)并缓解ART类别增殖问题(为解决分类问题创建不必要的过多ART网络类别的问题)。我们将由此产生的架构称为GFAM。我们通过大量实验证明,GFAM具有良好的泛化能力且规模较小(创建的ART类别较少),同时消耗合理的计算量。在许多分类问题中,GFAM能产生最优分类器。此外,我们将GFAM的性能与文献中出现的其他有竞争力的ARTMAP分类器进行比较,这些分类器也解决了ART中的类别增殖问题。我们表明,GFAM相对于这些架构以及其他有竞争力的分类器能产生更好的结果。

相似文献

1
GFAM: evolving Fuzzy ARTMAP neural networks.GFAM:不断演进的模糊ARTMAP神经网络。
Neural Netw. 2007 Oct;20(8):874-92. doi: 10.1016/j.neunet.2007.05.006. Epub 2007 Jun 3.
4
An adaptive multiobjective approach to evolving ART architectures.一种用于进化人工视网膜拓扑结构的自适应多目标方法。
IEEE Trans Neural Netw. 2010 Apr;21(4):529-50. doi: 10.1109/TNN.2009.2037813. Epub 2010 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验