Suppr超能文献

用于自适应共振理论网络的增量通信

Incremental communication for adaptive resonance theory networks.

作者信息

Chen Ming, Ghorbani Ali A, Bhavsar Virendrakumar C

机构信息

Faculty of Computer Science, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.

出版信息

IEEE Trans Neural Netw. 2005 Jan;16(1):132-44. doi: 10.1109/TNN.2004.839357.

Abstract

We have proposed earlier the incremental internode communication method to reduce the communication cost as well as the time of the learning process in artificial neural networks (ANNs). In this paper, the limited precision incremental communication method is applied to a class of recurrent neural networks, the adaptive resonance theory 2 (ART2) networks. Simulation studies are carried out to examine the effects of the incremental communication method on the convergence behavior of ART2 networks. We have found that, 7-13-b precision is sufficient to obtain almost the same results as those with full (32-b) precision conventional communication. A theoretical error analysis is also carried out to analyze the effects of the limited precision incremental communication. The simulation and analytical results show that the limited precision errors are bounded and do not seriously degrade the convergence of ART2 networks. Therefore, the incremental communication can be incorporated in parallel and special-purpose very large scale integration (VLSI) implementations of the ART2 networks.

摘要

我们之前提出了增量节点间通信方法,以降低人工神经网络(ANN)中的通信成本以及学习过程的时间。本文将有限精度增量通信方法应用于一类递归神经网络,即自适应共振理论2(ART2)网络。进行了仿真研究,以检验增量通信方法对ART2网络收敛行为的影响。我们发现,7至13位精度足以获得与全精度(32位)传统通信几乎相同的结果。还进行了理论误差分析,以分析有限精度增量通信的影响。仿真和分析结果表明,有限精度误差是有界的,不会严重降低ART2网络的收敛性。因此,增量通信可以纳入ART2网络的并行和专用超大规模集成(VLSI)实现中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验