Wang Dongxia, Cotter Robert J
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Anal Chem. 2005 Mar 1;77(5):1458-66. doi: 10.1021/ac048834d.
Protein ubiquitination plays an important role in the degradation and other functional regulation of cellular proteins in organisms ranging from yeasts to mammals. Trypsin digestion of ubiquitin conjugated proteins produces diglycine branched peptides in which the C-terminal Gly-Gly fragment of ubiquitin is attached to the epsilon-amino group of a modified lysine residue within the peptide. This provides a platform for mapping ubiquitination sites using mass spectrometry. Here we report the development of a novel strategy for determining posttraslational protein ubiquitination based on the N-terminal sulfonation of diglycine branched peptides. In contrast to conventional tandem MS spectra of native tryptic peptides, MALDI MS/MS analysis of a sulfonated tryptic peptide containing a diglycine branch generates a unique spectrum composed of a signature portion and a sequence portion. The signature portion of the spectrum consists of several intense ions resulting from the elimination of the tags, the N-terminal residues at the peptide and the branch, and their combination. This unique ion distribution pattern can distinguish ubiquitination modificatons from others and can identify the first N-terminal residues of the peptides as well. The sequence portion consists of an exclusive series of y-type ions and y' ions (differing by the loss of one glycine residue from the sulfonated diglycine branch) that can directly reveal the amino acid sequence of the peptide and the precise location of the ubiquitination site. The technique is demonstrated for a series of synthetic peptides and is validated by a model protein, tetraubiquitin. Our results show that the MALDI MS/MS analysis of sulfonated tryptic peptides can provide a highly effective method for the determination of ubiquitination substrates, ubiquitination sites on protein targets, and modification sites on ubiquitins themselves.
蛋白质泛素化在从酵母到哺乳动物等生物体的细胞蛋白质降解及其他功能调控中发挥着重要作用。对泛素缀合蛋白进行胰蛋白酶消化会产生双甘氨酸分支肽,其中泛素的C末端甘氨酸 - 甘氨酸片段连接到肽内修饰赖氨酸残基的ε - 氨基上。这为利用质谱法绘制泛素化位点提供了一个平台。在此,我们报告了一种基于双甘氨酸分支肽N末端磺化来确定蛋白质翻译后泛素化的新策略。与天然胰蛋白酶肽的传统串联质谱图不同,对含有双甘氨酸分支的磺化胰蛋白酶肽进行基质辅助激光解吸电离串联质谱(MALDI MS/MS)分析会产生一个独特的谱图,该谱图由一个特征部分和一个序列部分组成。谱图的特征部分由几个强离子组成,这些离子是由标签、肽和分支处的N末端残基及其组合的消除产生的。这种独特的离子分布模式可以将泛素化修饰与其他修饰区分开来,还可以识别肽的第一个N末端残基。序列部分由一系列独特的y型离子和y'离子(因磺化双甘氨酸分支失去一个甘氨酸残基而不同)组成,它们可以直接揭示肽的氨基酸序列和泛素化位点的精确位置。该技术已在一系列合成肽上得到验证,并通过模型蛋白四聚泛素进行了验证。我们的结果表明,对磺化胰蛋白酶肽进行MALDI MS/MS分析可为确定泛素化底物、蛋白质靶标的泛素化位点以及泛素自身的修饰位点提供一种高效方法。