Suppr超能文献

Chronic lithium treatment impairs phosphatidylinositol hydrolysis in membranes from rat brain regions.

作者信息

Song L, Jope R S

机构信息

Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham 35294.

出版信息

J Neurochem. 1992 Jun;58(6):2200-6. doi: 10.1111/j.1471-4159.1992.tb10964.x.

Abstract

Membranes prepared from rat brain regions were used to measure the receptor-coupled and/or guanine nucleotide-binding protein (G protein)-mediated hydrolysis of exogenous [3H]phosphatidylinositol ([3H]PI). Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and NaF (in the presence of AlCl3) caused concentration-dependent stimulations of [3H]PI hydrolysis, supporting the conclusion that G proteins mediating [3H]PI hydrolysis can be activated in this preparation. Neither of these responses was altered by in vitro incubation with 8 mM LiCl, but both were reduced in hippocampal, striatal, and cortical membranes from rats that had been treated with lithium for 4 weeks compared with controls. Two cholinergic agonists, carbachol and pilocarpine, induced no hydrolysis of [3H]PI unless GTP gamma S was also present, in which case each equally stimulated [3H]PI hydrolysis above that obtained with GTP gamma S alone. In the presence of GTP gamma S several excitatory amino acid agonists stimulated [3H]PI hydrolysis to an extent similar to that of carbachol. After chronic lithium treatment, [3H]PI hydrolysis stimulated by carbachol was significantly attenuated, but the response to quisqualate was unaffected. Therefore, lithium added in vitro does not have an effect on cholinergic receptor- or G protein-mediated [3H]PI hydrolysis, but each of these is reduced by chronic lithium treatment. Because exogenous [3H]PI was provided as the substrate, it is evident that the inhibitory effect of chronic lithium treatment cannot be due to substrate depletion. Impaired function of G proteins appears to be the most likely mechanism accounting for attenuated [3H]PI hydrolysis after chronic administration of lithium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验