Shimko Daniel A, Shimko Valerie Franz, Sander Edward A, Dickson Kyle F, Nauman Eric A
Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA.
J Biomed Mater Res B Appl Biomater. 2005 May;73(2):315-24. doi: 10.1002/jbm.b.30229.
In many cases of traumatic bone injury, bone grafting is required. The primary source of graft material is either autograft or allograft. The use of both material sources are well established, however, both suffer limitations. In response, many grafting alternatives are being explored. This article specifically focuses on a porous tantalum metal grafting material (Trabecular Metaltrade mark) marketed by Zimmer. Twenty-one cylindrical scaffolds were manufactured (66% to 88% porous) and tested for porosity, intrinsic permeability, tangent elastic modulus, and for yield stress and strain behavior. Scaffold microstructural geometries were also measured. Tantalum scaffold intrinsic permeability ranged from 2.1 x 10(-10) to 4.8 x 10(-10) m(2) and tangent elastic modulus ranged from 373 MPa to 2.2 GPa. Both intrinsic permeability and tangent elastic modulus closely matched porosity-matched cancellous bone specimens from a variety of species and anatomic locations. Scaffold yield stress ranged from 4 to 12.7 MPa and was comparable to bovine and human cancellous bone. Yield strain was unaffected by scaffold porosity (average = 0.010 mm/mm). Understanding these structure-function relationships will help complete the basic physical characterization of this new material and will aid in the development of realistic mathematical models, ultimately enhancing future implant designs utilizing this material.
在许多创伤性骨损伤病例中,需要进行骨移植。移植材料的主要来源是自体移植或异体移植。这两种材料来源的使用都已得到充分确立,然而,两者都存在局限性。作为回应,人们正在探索许多移植替代方案。本文特别关注由齐默公司销售的一种多孔钽金属移植材料(Trabecular Metal商标)。制造了21个圆柱形支架(孔隙率为66%至88%),并对其孔隙率、固有渗透率、切线弹性模量以及屈服应力和应变行为进行了测试。还测量了支架的微观结构几何形状。钽支架的固有渗透率范围为2.1×10^(-10)至4.8×10^(-10)平方米,切线弹性模量范围为373兆帕至2.2吉帕。固有渗透率和切线弹性模量都与来自各种物种和解剖位置的孔隙率匹配的松质骨标本密切匹配。支架的屈服应力范围为4至12.7兆帕,与牛和人的松质骨相当。屈服应变不受支架孔隙率的影响(平均值=0.010毫米/毫米)。了解这些结构 - 功能关系将有助于完成这种新材料的基本物理特性表征,并有助于开发现实的数学模型,最终改进利用这种材料的未来植入物设计。