Suppr超能文献

具有失效时间终点的临床试验的贝叶斯监测。

Bayesian monitoring of clinical trials with failure-time endpoints.

作者信息

Rosner Gary L

机构信息

Department of Biostatistics and Applied Mathematics, M. D. Anderson Cancer Center, The University of Texas, 1515 Holcombe Boulevard, Unit 447, Houston, Texas 77030, USA.

出版信息

Biometrics. 2005 Mar;61(1):239-45. doi: 10.1111/j.0006-341X.2005.031037.x.

Abstract

This article presents an aid for monitoring clinical trials with failure-time endpoints based on the Bayesian nonparametric analyses of the data. The posterior distribution is a mixture of Dirichlet processes in the presence of censoring if one assumes a Dirichlet process prior for the survival distribution. Using Gibbs sampling, one can generate random samples from the posterior distribution. With samples from the posterior distributions of treatment-specific survival curves, one can evaluate the current evidence in favor of stopping or continuing the trial based on summary statistics of these survival curves. Because the method is nonparametric, it can easily be used, for example, in situations where hazards cross or are suspected to cross and where relevant clinical decisions might be based on estimating when the integral between the curves might be expected to become positive and in favor of the new but toxic therapy. An example based on an actual trial illustrates the method.

摘要

本文基于数据的贝叶斯非参数分析,提出了一种用于监测具有失效时间终点的临床试验的辅助方法。如果假设生存分布的先验为狄利克雷过程,那么在存在删失的情况下,后验分布是狄利克雷过程的混合。使用吉布斯采样,可以从后验分布中生成随机样本。利用来自特定治疗生存曲线后验分布的样本,可以根据这些生存曲线的汇总统计量,评估当前支持试验停止或继续的证据。由于该方法是非参数的,因此它可以很容易地用于例如风险交叉或疑似交叉的情况,以及相关临床决策可能基于估计曲线之间的积分何时可能变为正值并支持新的但有毒的治疗方法的情况。基于实际试验的一个例子说明了该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验