Suppr超能文献

用于视觉能量最小化的最小割/最大流算法的实验比较。

An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.

作者信息

Boykov Yuri, Kolmogorov Vladimir

机构信息

Computer Science Department, the University of Western Ontario, London, Ontario N6A 5B7, Canada.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1124-37. doi: 10.1109/TPAMI.2004.60.

Abstract

After [15], [31], [19], [8], [25], [5], minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the scope of computer vision. The goal of this paper is to provide an experimental comparison of the efficiency of min-cut/max flow algorithms for applications in vision. We compare the running times of several standard algorithms, as well as a new algorithm that we have recently developed. The algorithms we study include both Goldberg-Tarjan style "push-relabel" methods and algorithms based on Ford-Fulkerson style "augmenting paths." We benchmark these algorithms on a number of typical graphs in the contexts of image restoration, stereo, and segmentation. In many cases, our new algorithm works several times faster than any of the other methods, making near real-time performance possible. An implementation of our max-flow/min-cut algorithm is available upon request for research purposes.

摘要

继[15]、[31]、[19]、[8]、[25]、[5]之后,图上的最小割/最大流算法成为低层次视觉中进行精确或近似能量最小化的一种越来越有用的工具。组合优化文献提供了许多具有不同多项式时间复杂度的最小割/最大流算法。然而,迄今为止,它们的实际效率主要是在计算机视觉范围之外进行研究的。本文的目标是对最小割/最大流算法在视觉应用中的效率进行实验比较。我们比较了几种标准算法以及我们最近开发的一种新算法的运行时间。我们研究的算法包括戈德堡 - 塔尔扬风格的“推送 - 重贴标签”方法和基于福特 - 富尔克森风格的“增广路径”算法。我们在图像恢复、立体视觉和分割等背景下的一些典型图上对这些算法进行基准测试。在许多情况下,我们的新算法比其他任何方法都快几倍,使得接近实时的性能成为可能。我们的最大流/最小割算法的实现可应研究目的要求提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验