Suppr超能文献

基于图割的人体MRI椎间盘分割

Graph cut-based segmentation for intervertebral disc in human MRI.

作者信息

Silvoster Leena, Kumar R Mathusoothan S

机构信息

Department of Computer Science, College of Engineering Attingal, India.

Department of Information Technology, Noorul Islam Centre for Higher Education, India.

出版信息

Comput Methods Biomech Biomed Eng Imaging Vis. 2025 Jun 12;13(1):2475992. doi: 10.1080/21681163.2025.2475992. eCollection 2025.

Abstract

We introduce an automated algorithm for the 2D segmentation of both healthy and degenerated lumbar intervertebral discs (IVD) from T2-weighted Turbo Spin Echo(TSE) sagittal spine Magnetic Resonance Images (MRIs). Our approach employs a fast algorithm addressing the s-t max-flow/min-cut problem, incorporating anatomical knowledge of soft tissues in the human body. In the initial phase, preprocessing is applied to the input image to eliminate intensity inhomogeneity and noise. A graph is then constructed from the image pixels, and seed points are automatically initialised using a growing bounding box. In the second phase, the method applies the s-t max-flow/min-cut algorithm to separate an IVD from the background. This method effectively detects degenerated and healthy IVDs by applying the s-t max-flow/min-cut algorithm within a directed graph. The polynomial time complexity of this approach enables the exploration of a globally optimal solution, eliminating the need for user interaction in seed point selection. Validation of the algorithm on a dataset of 15 patients demonstrates its efficient segmentation performance, achieving a Dice Similarity Coefficient (DSC) of 89%.

摘要

我们介绍了一种自动算法,用于从T2加权快速自旋回波(TSE)矢状位脊柱磁共振成像(MRI)中对健康和退变的腰椎间盘(IVD)进行二维分割。我们的方法采用了一种快速算法来解决s-t最大流/最小割问题,并融入了人体软组织的解剖学知识。在初始阶段,对输入图像进行预处理以消除强度不均匀性和噪声。然后从图像像素构建一个图,并使用不断扩大的边界框自动初始化种子点。在第二阶段,该方法应用s-t最大流/最小割算法将IVD与背景分离。此方法通过在有向图中应用s-t最大流/最小割算法有效地检测退变和健康的IVD。这种方法的多项式时间复杂度使得能够探索全局最优解,无需用户在种子点选择中进行交互。在15名患者的数据集上对该算法进行验证,证明了其高效的分割性能,达到了89%的骰子相似系数(DSC)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e27/12312649/61f71542c4d9/TCIV_A_2475992_F0001_OC.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验