Silvoster Leena, Kumar R Mathusoothan S
Department of Computer Science, College of Engineering Attingal, India.
Department of Information Technology, Noorul Islam Centre for Higher Education, India.
Comput Methods Biomech Biomed Eng Imaging Vis. 2025 Jun 12;13(1):2475992. doi: 10.1080/21681163.2025.2475992. eCollection 2025.
We introduce an automated algorithm for the 2D segmentation of both healthy and degenerated lumbar intervertebral discs (IVD) from T2-weighted Turbo Spin Echo(TSE) sagittal spine Magnetic Resonance Images (MRIs). Our approach employs a fast algorithm addressing the s-t max-flow/min-cut problem, incorporating anatomical knowledge of soft tissues in the human body. In the initial phase, preprocessing is applied to the input image to eliminate intensity inhomogeneity and noise. A graph is then constructed from the image pixels, and seed points are automatically initialised using a growing bounding box. In the second phase, the method applies the s-t max-flow/min-cut algorithm to separate an IVD from the background. This method effectively detects degenerated and healthy IVDs by applying the s-t max-flow/min-cut algorithm within a directed graph. The polynomial time complexity of this approach enables the exploration of a globally optimal solution, eliminating the need for user interaction in seed point selection. Validation of the algorithm on a dataset of 15 patients demonstrates its efficient segmentation performance, achieving a Dice Similarity Coefficient (DSC) of 89%.
我们介绍了一种自动算法,用于从T2加权快速自旋回波(TSE)矢状位脊柱磁共振成像(MRI)中对健康和退变的腰椎间盘(IVD)进行二维分割。我们的方法采用了一种快速算法来解决s-t最大流/最小割问题,并融入了人体软组织的解剖学知识。在初始阶段,对输入图像进行预处理以消除强度不均匀性和噪声。然后从图像像素构建一个图,并使用不断扩大的边界框自动初始化种子点。在第二阶段,该方法应用s-t最大流/最小割算法将IVD与背景分离。此方法通过在有向图中应用s-t最大流/最小割算法有效地检测退变和健康的IVD。这种方法的多项式时间复杂度使得能够探索全局最优解,无需用户在种子点选择中进行交互。在15名患者的数据集上对该算法进行验证,证明了其高效的分割性能,达到了89%的骰子相似系数(DSC)。