Park Jong-Min
Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA.
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1197-207. doi: 10.1109/TPAMI.2004.61.
The analysis of convergence and its application is shown for the Active Sampling-at-the-Boundary method applied to multidimensional space using orthogonal pillar vectors. Active learning method facilitates identifying an optimal decision boundary for pattern classification in machine learning. The result of this method is compared with the standard active learning method that uses random sampling on the decision boundary hyperplane. The comparison is done through simulation and application to the real-world data from the UCI benchmark data set. The boundary is modeled as a nonseparable linear decision hyperplane in multidimensional space with a stochastic oracle.
展示了将应用于多维空间的边界主动采样方法(使用正交柱向量)的收敛性分析及其应用。主动学习方法有助于在机器学习中识别用于模式分类的最优决策边界。将该方法的结果与在决策边界超平面上使用随机采样的标准主动学习方法进行比较。通过模拟以及对来自UCI基准数据集的真实世界数据的应用来进行比较。在多维空间中,边界被建模为具有随机预言机的不可分离线性决策超平面。