Camastra Francesco, Verri Alessandro
INFM-DISI, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy.
IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):801-5. doi: 10.1109/TPAMI.2005.88.
Kernel Methods are algorithms that, by replacing the inner product with an appropriate positive definite function, implicitly perform a nonlinear mapping of the input data into a high-dimensional feature space. In this paper, we present a kernel method for clustering inspired by the classical K-Means algorithm in which each cluster is iteratively refined using a one-class Support Vector Machine. Our method, which can be easily implemented, compares favorably with respect to popular clustering algorithms, like K-Means, Neural Gas, and Self-Organizing Maps, on a synthetic data set and three UCI real data benchmarks (IRIS data, Wisconsin breast cancer database, Spam database).
核方法是一类算法,通过用适当的正定函数替换内积,隐式地将输入数据进行非线性映射到高维特征空间。在本文中,我们提出了一种受经典K均值算法启发的聚类核方法,其中每个聚类使用单类支持向量机进行迭代细化。我们的方法易于实现,在一个合成数据集和三个UCI真实数据基准(鸢尾花数据、威斯康星乳腺癌数据库、垃圾邮件数据库)上,与流行的聚类算法(如K均值、神经气体和自组织映射)相比具有优势。