Suppr超能文献

在校准和未校准视角下,基于图像参数的三维模型的最小表示。

Minimal representations of 3D models in terms of image parameters under calibrated and uncalibrated perspective.

作者信息

Caglioti Vincenzo

机构信息

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Pza Leonardo da Vinci, 32, 20133 Milano, Italy.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1234-8. doi: 10.1109/TPAMI.2004.69.

Abstract

Indexing is a well-known paradigm for object recognition. In indexing, each 3D model is represented as the set of values assumed by a given vector of image parameters in correspondence to all the possible images of the 3D model. An open problem, posed by Jacobs, concerned the minimum dimensionality of such sets under perspective. This paper proves that, under calibrated or uncalibrated perspective, the minimum dimensionality of the set representing any 3D modeled point-set is two. Two-dimensional representations are found also for 3D curved objects.

摘要

索引是一种广为人知的对象识别范式。在索引中,每个3D模型都表示为与3D模型的所有可能图像相对应的给定图像参数向量所假定的值的集合。雅各布斯提出的一个未解决问题涉及在透视情况下此类集合的最小维度。本文证明,在校准或未校准透视下,表示任何3D建模点集的集合的最小维度为2。还找到了3D曲面物体的二维表示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验