Adán Antonio, Adán Miguel
Departamento de I.E.E. y Automática, Universidad de Castilla La Mancha, 13071 Ciudad Real, Spain.
IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1507-20. doi: 10.1109/TPAMI.2004.94.
This paper is devoted to presenting a new strategy for 3D objects recognition using a flexible similarity measure based on the recent Modeling Wave (MW) topology in spherical models. MW topology allows us to establish an n-connectivity relationship in 3D objects modeling meshes. Using the complete object model, a study on considering different partial information of the model has been carried out to recognize an object. For this, we have introduced a new feature called Cone-Curvature (CC), which originates from the MW concept. CC gives an extended geometrical surroundings knowledge for every node of the mesh model and allows us to define a robust and adaptable similarity measure between objects for a specific model database. The defined similarity metric has been successfully tested in our lab using range data of a wide variety of 3D shapes. Finally, we show the applicability of our method presenting experimentation for recognition on noise and occlusion conditions in complex scenes.
本文致力于提出一种用于三维物体识别的新策略,该策略基于球面模型中最近的建模波(MW)拓扑结构使用灵活的相似性度量。MW拓扑结构使我们能够在三维物体建模网格中建立n连通性关系。利用完整的物体模型,对考虑模型的不同部分信息进行了研究以识别物体。为此,我们引入了一种名为锥曲率(CC)的新特征,它源自MW概念。CC为网格模型的每个节点提供了扩展的几何环境知识,并使我们能够为特定模型数据库定义物体之间强大且适应性强的相似性度量。所定义的相似性度量已在我们实验室中使用各种三维形状的距离数据成功进行了测试。最后,我们通过在复杂场景中的噪声和遮挡条件下进行识别实验来展示我们方法的适用性。