用于非线性降维的高维数据保距投影
Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction.
作者信息
Yang Li
机构信息
Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA.
出版信息
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1243-6. doi: 10.1109/TPAMI.2004.66.
A distance-preserving method is presented to map high-dimensional data sequentially to low-dimensional space. It preserves exact distances of each data point to its nearest neighbor and to some other near neighbors. Intrinsic dimensionality of data is estimated by examining the preservation of interpoint distances. The method has no user-selectable parameter. It can successfully project data when the data points are spread among multiple clusters. Results of experiments show its usefulness in projecting high-dimensional data.
提出了一种保距方法,用于将高维数据顺序映射到低维空间。它保留了每个数据点到其最近邻以及一些其他近邻的精确距离。通过检查点间距离的保留情况来估计数据的内在维度。该方法没有用户可选择的参数。当数据点分布在多个簇中时,它可以成功地对数据进行投影。实验结果表明了其在投影高维数据方面的有效性。