Suppr超能文献

判别式学习分析

Discriminant learning analysis.

作者信息

Peng Jing, Zhang Peng, Riedel Norbert

机构信息

Computer Science Department, Montclair State University, Montclair, NJ 07003, USA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2008 Dec;38(6):1614-25. doi: 10.1109/TSMCB.2008.2002852.

Abstract

Linear discriminant analysis (LDA) as a dimension reduction method is widely used in classification such as face recognition. However, it suffers from the small sample size (SSS) problem when data dimensionality is greater than the sample size, as in images where features are high dimensional and correlated. In this paper, we propose to address the SSS problem in the framework of statistical learning theory. We compute linear discriminants by regularized least squares regression, where the singularity problem is resolved. The resulting discriminants are complete in that they include both regular and irregular information. We show that our proposal and its nonlinear extension belong to the same framework where powerful classifiers such as support vector machines are formulated. In addition, our approach allows us to establish an error bound for LDA. Finally, our experiments validate our theoretical analysis results.

摘要

线性判别分析(LDA)作为一种降维方法,在诸如人脸识别等分类领域中得到了广泛应用。然而,当数据维度大于样本数量时,它会遭遇小样本规模(SSS)问题,例如在特征高维且相关的图像中。在本文中,我们提议在统计学习理论框架下解决SSS问题。我们通过正则化最小二乘回归来计算线性判别式,其中奇异性问题得以解决。所得的判别式是完备的,因为它们同时包含了常规和非常规信息。我们表明,我们的提议及其非线性扩展属于同一个框架,在这个框架中可以构建诸如支持向量机等强大的分类器。此外,我们的方法使我们能够为LDA建立一个误差界。最后,我们的实验验证了我们的理论分析结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验