Suppr超能文献

重新审视酿酒酵母中的嘌呤-组氨酸交叉途径调控:一种小分子的核心作用

Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule.

作者信息

Rébora Karine, Laloo Benoît, Daignan-Fornier Bertrand

机构信息

Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, CNRS UMR 5095, France.

出版信息

Genetics. 2005 May;170(1):61-70. doi: 10.1534/genetics.104.039396. Epub 2005 Mar 2.

Abstract

Because some metabolic intermediates are involved in more than one pathway, crosstalk between pathways is crucial to maintaining homeostasis. AMP and histidine biosynthesis pathways are coregulated at the transcriptional level in response to adenine availability. 5'-Phosphoribosyl-4-carboxamide-5-aminoimidazole (AICAR), a metabolic intermediate at the crossroads between these two pathways, is shown here to be critical for activation of the transcriptional response in the absence of adenine. In this study, we show that both AMP and histidine pathways significantly contribute to AICAR synthesis. Furthermore, we show that upregulation of the histidine pathway clearly interferes with regulation of the AMP pathway, thus providing an explanation for the regulatory crosstalk between these pathways. Finally, we revisit the histidine auxotrophy of ade3 or ade16 ade17 mutants. Interestingly, overexpression of PMU1, encoding a potential phosphomutase, partially suppresses the histidine requirement of an ade3 ade16 ade17 triple mutant, most probably by reducing the level of AICAR in this mutant. Together our data clearly establish that AICAR is not just a metabolic intermediate but also acts as a true regulatory molecule.

摘要

由于一些代谢中间体参与不止一条途径,因此途径间的相互作用对于维持体内平衡至关重要。AMP和组氨酸生物合成途径在转录水平上受到共同调节,以响应腺嘌呤的可用性。5'-磷酸核糖基-4-羧酰胺-5-氨基咪唑(AICAR)是这两条途径交汇点处的一种代谢中间体,本文显示它在缺乏腺嘌呤时对转录反应的激活至关重要。在本研究中,我们表明AMP和组氨酸途径都对AICAR的合成有显著贡献。此外,我们表明组氨酸途径的上调明显干扰了AMP途径的调节,从而为这些途径之间的调节相互作用提供了解释。最后,我们重新审视了ade3或ade16 ade17突变体的组氨酸营养缺陷型。有趣的是,编码一种潜在磷酸变位酶的PMU1的过表达部分抑制了ade3 ade16 ade17三重突变体对组氨酸的需求,最有可能是通过降低该突变体中AICAR的水平。我们的数据共同明确表明,AICAR不仅是一种代谢中间体,而且还作为一种真正的调节分子发挥作用。

相似文献

1
Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule.
Genetics. 2005 May;170(1):61-70. doi: 10.1534/genetics.104.039396. Epub 2005 Mar 2.
2
Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae.
Curr Genet. 2015 Nov;61(4):633-40. doi: 10.1007/s00294-015-0489-7. Epub 2015 Apr 17.
3
Yeast AMP pathway genes respond to adenine through regulated synthesis of a metabolic intermediate.
Mol Cell Biol. 2001 Dec;21(23):7901-12. doi: 10.1128/MCB.21.23.7901-7912.2001.
4
DNA-bound Bas1 recruits Pho2 to activate ADE genes in Saccharomyces cerevisiae.
Eukaryot Cell. 2005 Oct;4(10):1725-35. doi: 10.1128/EC.4.10.1725-1735.2005.
7
Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations.
Mol Microbiol. 2008 Jun;68(6):1583-94. doi: 10.1111/j.1365-2958.2008.06261.x. Epub 2008 Apr 21.
10
Physiological and toxic effects of purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) in yeast.
J Biol Chem. 2011 Sep 2;286(35):30994-31002. doi: 10.1074/jbc.M111.262659. Epub 2011 Jul 12.

引用本文的文献

1
Iterative SCRaMbLE for engineering synthetic genome modules and chromosomes.
Nat Commun. 2025 Aug 7;16(1):7278. doi: 10.1038/s41467-025-62356-y.
2
Providing insight into the mechanism of action of cationic lipidated oligomers using metabolomics.
mSystems. 2024 May 16;9(5):e0009324. doi: 10.1128/msystems.00093-24. Epub 2024 Apr 12.
3
Tetrahydrofolate levels influence 2-aminoacrylate stress in .
J Bacteriol. 2024 Apr 18;206(4):e0004224. doi: 10.1128/jb.00042-24. Epub 2024 Apr 2.
4
MOB rules: Antibiotic Exposure Reprograms Metabolism to Mobilize in Competitive Interactions.
bioRxiv. 2024 Mar 20:2024.03.20.585991. doi: 10.1101/2024.03.20.585991.
5
Purine metabolism in plant pathogenic fungi.
Front Microbiol. 2024 Feb 7;15:1352354. doi: 10.3389/fmicb.2024.1352354. eCollection 2024.
7
10
Purine Nucleotide Biosynthesis Pathway Is Required for Development and Pathogenicity in .
J Fungi (Basel). 2022 Aug 29;8(9):915. doi: 10.3390/jof8090915.

本文引用的文献

1
Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid.
Science. 2004 Jun 11;304(5677):1644-7. doi: 10.1126/science.1096083.
2
AICA-ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC.
Am J Hum Genet. 2004 Jun;74(6):1276-81. doi: 10.1086/421475. Epub 2004 Apr 26.
5
Pitfalls of the synthetic lethality screen in Saccharomyces cerevisiae: an improved design.
Curr Genet. 2003 Apr;43(1):62-9. doi: 10.1007/s00294-003-0373-8. Epub 2003 Feb 5.
6
Cloning and characterization of methenyltetrahydrofolate synthetase from Saccharomyces cerevisiae.
J Biol Chem. 2002 Jun 7;277(23):20205-13. doi: 10.1074/jbc.M201242200. Epub 2002 Mar 28.
8
Yeast AMP pathway genes respond to adenine through regulated synthesis of a metabolic intermediate.
Mol Cell Biol. 2001 Dec;21(23):7901-12. doi: 10.1128/MCB.21.23.7901-7912.2001.
9
Regulation of hisHF transcription of Aspergillus nidulans by adenine and amino acid limitation.
Fungal Genet Biol. 2001 Feb;32(1):21-31. doi: 10.1006/fgbi.2000.1244.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验