Flannigan David J, Suslick Kenneth S
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Nature. 2005 Mar 3;434(7029):52-5. doi: 10.1038/nature03361.
Single-bubble sonoluminescence (SBSL) results from the extreme temperatures and pressures achieved during bubble compression; calculations have predicted the existence of a hot, optically opaque plasma core with consequent bremsstrahlung radiation. Recent controversial reports claim the observation of neutrons from deuterium-deuterium fusion during acoustic cavitation. However, there has been previously no strong experimental evidence for the existence of a plasma during single- or multi-bubble sonoluminescence. SBSL typically produces featureless emission spectra that reveal little about the intra-cavity physical conditions or chemical processes. Here we report observations of atomic (Ar) emission and extensive molecular (SO) and ionic (O2+) progressions in SBSL spectra from concentrated aqueous H2SO4 solutions. Both the Ar and SO emission permit spectroscopic temperature determinations, as accomplished for multi-bubble sonoluminescence with other emitters. The emissive excited states observed from both Ar and O2+ are inconsistent with any thermal process. The Ar excited states involved are extremely high in energy (>13 eV) and cannot be thermally populated at the measured Ar emission temperatures (4,000-15,000 K); the ionization energy of O2 is more than twice its bond dissociation energy, so O2+ likewise cannot be thermally produced. We therefore conclude that these emitting species must originate from collisions with high-energy electrons, ions or particles from a hot plasma core.
单泡声致发光(SBSL)源于气泡压缩过程中达到的极端温度和压力;计算预测存在一个热的、光学不透明的等离子体核心,并伴随韧致辐射。最近有争议的报道称在声空化过程中观测到了氘 - 氘聚变产生的中子。然而,此前在单泡或多泡声致发光过程中,一直没有强有力的实验证据证明等离子体的存在。SBSL通常产生无特征的发射光谱,几乎无法揭示腔内的物理条件或化学过程。在此我们报告了在浓H2SO4水溶液的SBSL光谱中观测到的原子(Ar)发射以及大量分子(SO)和离子(O2+)谱线序列。Ar和SO发射都可用于光谱温度测定,这与利用其他发射体对多泡声致发光所做的测定一样。从Ar和O2+观测到的发射激发态与任何热过程都不一致。所涉及的Ar激发态能量极高(>13 eV),在测得的Ar发射温度(4000 - 15000 K)下无法通过热激发产生;O2的电离能是其键解离能的两倍多,所以O2+同样也不能通过热过程产生。因此我们得出结论,这些发射物种必定源自与来自热等离子体核心的高能电子、离子或粒子的碰撞。