Rousset Matthieu, Charnet Pierre, Cens Thierry
Equipe de Neurobiologie moléculaire, Centre de Recherche de Biochimie macromoléculaire, CNRS FRE 2593, 1919, route de Mende, 34293 Montpellier, France.
Med Sci (Paris). 2005 Mar;21(3):279-83. doi: 10.1051/medsci/2005213279.
Voltage-gated calcium channels are key players in a number of fundamental physiological functions including contraction, secretion, transmitter release or gene activation. They allow a flux of calcium into the cell that constitutes a switch-on signal for most of these functions. The structures responsible for the shaping of these fluxes by the membrane voltage belong to the channel itself, but a number of associated proteins are known to more precisely tune this calcium entry and adapt it to the cellular demand. The calcium channel regulatory beta subunit is undoubtedly the most important one, being influent on the expression, the kinetics, the voltage-dependence of channel opening and closing and on the pharmacology of the channel. Heterologous expression, combined to mutagenesis and electrophysiological and biochemical experiments have revealed the roles of short sequences of the beta subunit, including the BID (beta-interaction domain), in the physical and functional interactions with the channel pore. The resolved crystal structure of the beta subunit now sheds new light on these sequences and their interactions with the rest of the protein. The presence of a type 3 src-homology (SH3) domain and a guanylate kinase (GK) domain confirms that the subunit belongs to the MAGUK protein family. Consistently, the polyproline binding site and the kinase function of the SH3 and the GK domains, respectively, are non functional, and the BID appears to be buried in the structure, preserving the SH3-GK interaction but not directly available for interactions with the channel pore subunit. Anchoring of the beta subunit to the channel occurs via a hydrophobic grove in the GK domain, leaving a large surface of the subunit open to other protein-protein interactions. To what extent the intramolecular SH3-GK interaction is necessary for the stabilisation of this grove in a functional unit remains to be understood. The beta subunit may thus play a key role in scaffolding multiple proteins around the channel and organizing diverse calcium-dependent signalling pathways directly linked to voltage-gated calcium entry. These findings will undoubtedly vitalize the search for new beta-specific partners and functions.
电压门控钙通道在许多基本生理功能中起着关键作用,包括收缩、分泌、递质释放或基因激活。它们允许钙流入细胞,而钙流入构成了这些功能中大多数功能的开启信号。由膜电压塑造这些钙流的结构属于通道本身,但已知许多相关蛋白可更精确地调节这种钙内流并使其适应细胞需求。钙通道调节β亚基无疑是最重要的一个,它对通道的表达、动力学、开闭的电压依赖性以及通道的药理学都有影响。异源表达与诱变以及电生理和生化实验相结合,揭示了β亚基短序列的作用,包括BID(β相互作用结构域),在与通道孔的物理和功能相互作用中的作用。β亚基解析后的晶体结构现在为这些序列及其与蛋白质其余部分的相互作用提供了新的线索。3型src同源(SH3)结构域和鸟苷酸激酶(GK)结构域的存在证实该亚基属于MAGUK蛋白家族。一致的是,SH3和GK结构域的多聚脯氨酸结合位点和激酶功能分别无功能,并且BID似乎埋在结构中,保留了SH3-GK相互作用,但不能直接用于与通道孔亚基的相互作用。β亚基通过GK结构域中的疏水凹槽锚定到通道上,使该亚基的一大表面可用于其他蛋白质-蛋白质相互作用。分子内SH3-GK相互作用在功能单元中稳定该凹槽的必要程度仍有待了解。因此,β亚基可能在围绕通道搭建多种蛋白质以及组织与电压门控钙内流直接相关的多种钙依赖性信号通路中起关键作用。这些发现无疑将激发对新的β特异性伴侣和功能的探索。