Suppr超能文献

用于形状近似的几何感知基

Geometry-aware bases for shape approximation.

作者信息

Sorkine Olga, Cohen-Or Daniel, Irony Dror, Toledo Sivan

机构信息

The authors are with the School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

IEEE Trans Vis Comput Graph. 2005 Mar-Apr;11(2):171-80. doi: 10.1109/TVCG.2005.33.

Abstract

We introduce a new class of shape approximation techniques for irregular triangular meshes. Our method approximates the geometry of the mesh using a linear combination of a small number of basis vectors. The basis vectors are functions of the mesh connectivity and of the mesh indices of a number of anchor vertices. There is a fundamental difference between the bases generated by our method and those generated by geometry-oblivious methods, such as Laplacian-based spectral methods. In the latter methods, the basis vectors are functions of the connectivity alone. The basis vectors of our method, in contrast, are geometry-aware since they depend on both the connectivity and on a binary tagging of vertices that are "geometrically important" in the given mesh (e.g., extrema). We show that, by defining the basis vectors to be the solutions of certain least-squares problems, the reconstruction problem reduces to solving a single sparse linear least-squares problem. We also show that this problem can be solved quickly using a state-of-the-art sparse-matrix factorization algorithm. We show how to select the anchor vertices to define a compact effective basis from which an approximated shape can be reconstructed. Furthermore, we develop an incremental update of the factorization of the least-squares system. This allows a progressive scheme where an initial approximation is incrementally refined by a stream of anchor points. We show that the incremental update and solving the factored system are fast enough to allow an online refinement of the mesh geometry.

摘要

我们介绍了一类用于不规则三角形网格的新型形状逼近技术。我们的方法使用少量基向量的线性组合来逼近网格的几何形状。基向量是网格连通性以及多个锚点顶点的网格索引的函数。我们的方法生成的基与那些不考虑几何的方法(如基于拉普拉斯的谱方法)生成的基之间存在根本差异。在后者的方法中,基向量仅是连通性的函数。相比之下,我们方法的基向量是几何感知的,因为它们既依赖于连通性,又依赖于在给定网格中“几何上重要”的顶点(例如极值点)的二元标记。我们表明,通过将基向量定义为某些最小二乘问题的解,重构问题可简化为求解单个稀疏线性最小二乘问题。我们还表明,使用先进的稀疏矩阵分解算法可以快速解决此问题。我们展示了如何选择锚点顶点来定义一个紧凑有效的基,从中可以重构近似形状。此外,我们开发了最小二乘系统分解的增量更新。这允许一种渐进方案,其中初始近似通过一系列锚点进行增量细化。我们表明,增量更新和求解分解后的系统足够快,能够实现网格几何形状的在线细化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验