Brake Jeffrey M, Daschner Maren K, Abbott Nicholas L
Department of Chemical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
Langmuir. 2005 Mar 15;21(6):2218-28. doi: 10.1021/la0482397.
This paper reports an experimental investigation of the self-assembly of phospholipids (l-alpha-phosphatidylcholine-beta-oleoyl-gamma-palmitoyl (l-POPC), dipalmitoyl phosphatidylcholine (DPPC), and l-alpha-dilauroyl phosphatidylcholine (l-DLPC)) at interfaces between aqueous phases and the nematic liquid crystal (LC) 4'-pentyl-4-cyanobiphenyl. Stable planar interfaces between the aqueous phases and LCs were created by hosting the LCs within gold grids (square pores with widths of 283 microm and depths of 20 microm). At these interfaces, the presence and lateral organization of the phospholipids leads to interface-driven orientational transitions within the LC. By doping the phospholipids with a fluorescently labeled lipid (Texas Red-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (TR-DPPE)), quantitative epifluorescence microscopy revealed the saturation coverage of phospholipid at the interface to be that of a monolayer with an areal density of approximately 49 +/- 8% relative to hydrated lipid bilayers. By adsorbing phospholipids to the aqueous-LC interface from either vesicles or mixed micelles of dodecyltrimethylammonium and phospholipid, control of the areal density of phospholipid from 42 +/- 10 to 102 +/-18% of saturation monolayer coverage was demonstrated. Fluorescence recovery after photobleaching (FRAP) experiments performed by using laser scanning confocal microscopy (LSCM) revealed the lateral mobility of fluorescently labeled DPPE in l-DLPC assembled at the interface with the liquid crystal to be (6 +/- 1) x 10(-12) m(2)/s for densely packed monolayers. Variation of the surface coverage and composition of phospholipid led to changes in lateral diffusivity between (0.2 +/- 0.1) x 10(-12) and (15 +/- 2) x 10(-12) m(2)/s. We also observed the phospholipid-laden interface to be compartmentalized by the gold grid, thus allowing for the creation of patterned arrays of phospholipids at the LC-aqueous interface.
本文报道了磷脂(l-α-磷脂酰胆碱-β-油酰基-γ-棕榈酰基(l-POPC)、二棕榈酰磷脂酰胆碱(DPPC)和l-α-二月桂酰磷脂酰胆碱(l-DLPC))在水相和向列相液晶(LC)4'-戊基-4-氰基联苯界面处自组装的实验研究。通过将液晶容纳在金网格(宽度为283微米、深度为20微米的方孔)中来创建水相和液晶之间稳定的平面界面。在这些界面处,磷脂的存在和横向组织导致液晶内部发生界面驱动的取向转变。通过用荧光标记的脂质(德州红-1,2-二棕榈酰-sn-甘油-3-磷酸乙醇胺(TR-DPPE))掺杂磷脂,定量落射荧光显微镜显示界面处磷脂的饱和覆盖率相对于水合脂质双层为单层,面密度约为49±8%。通过将磷脂从囊泡或十二烷基三甲基铵与磷脂的混合胶束吸附到水-液晶界面,证明了磷脂面密度可从饱和单层覆盖率的42±10%控制到102±18%。使用激光扫描共聚焦显微镜(LSCM)进行的光漂白后荧光恢复(FRAP)实验表明,对于紧密堆积的单层,在与液晶界面组装的l-DLPC中,荧光标记的DPPE的横向迁移率为(6±1)×10⁻¹² m²/s。磷脂表面覆盖率和组成的变化导致横向扩散率在(0.2±0.1)×10⁻¹²和(15±2)×10⁻¹² m²/s之间变化。我们还观察到负载磷脂的界面被金网格分隔,从而允许在液晶-水界面创建磷脂的图案化阵列。