Bagatolli L A, Gratton E
Laboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA.
Biophys J. 2000 Jan;78(1):290-305. doi: 10.1016/S0006-3495(00)76592-1.
Images of giant unilamellar vesicles (GUVs) formed by different phospholipid mixtures (1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1, 2-dilauroyl-sn-glycero-3-phosphocholine (DPPC/DLPC) 1:1 (mol/mol), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPE/DPPC), 7:3 and 3:7 (mol/mol) at different temperatures were obtained by exploiting the sectioning capability of a two-photon excitation fluorescence microscope. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN), 6-propionyl-2-dimethylamino-naphthalene (PRODAN), and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE) were used as fluorescent probes to reveal domain coexistence in the GUVs. We report the first characterization of the morphology of lipid domains in unsupported lipid bilayers. From the LAURDAN intensity images the excitation generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domain. On the basis of the phase diagram of each lipid mixture, we found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region in all lipid mixtures. At temperatures corresponding to the phase coexistence region we observed lipid domains of different sizes and shapes, depending on the lipid sample composition. In the case of GUVs formed by DPPE/DPPC mixture, the gel DPPE domains present different shapes, such as hexagonal, rhombic, six-cornered star, dumbbell, or dendritic. At the phase coexistence region, the gel DPPE domains are moving and growing as the temperature decreases. Separated domains remain in the GUVs at temperatures corresponding to the solid region, showing solid-solid immiscibility. A different morphology was found in GUVs composed of DLPC/DPPC 1:1 (mol/mol) mixtures. At temperatures corresponding to the phase coexistence, we observed the gel domains as line defects in the GUV surface. These lines move and become thicker as the temperature decreases. As judged by the LAURDAN GP histogram, we concluded that the lipid phase characteristics at the phase coexistence region are different between the DPPE/DPPC and DLPC/DPPC mixtures. In the DPPE/DPPC mixture the coexistence is between pure gel and pure liquid domains, while in the DLPC/DPPC 1:1 (mol/mol) mixture we observed a strong influence of one phase on the other. In all cases the domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This observation is also novel for unsupported lipid bilayers.
利用双光子激发荧光显微镜的切片能力,获得了由不同磷脂混合物(1,2-二棕榈酰-sn-甘油-3-磷酸胆碱/1,2-二月桂酰-sn-甘油-3-磷酸胆碱(DPPC/DLPC)1:1(摩尔/摩尔),以及1,2-二棕榈酰-sn-甘油-3-磷酸乙醇胺/1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPE/DPPC),7:3和3:7(摩尔/摩尔))在不同温度下形成的巨型单层囊泡(GUV)的图像。使用6-十二烷酰-2-二甲基氨基萘(LAURDAN)、6-丙酰-2-二甲基氨基萘(PRODAN)和丽丝胺罗丹明B 1,2-二己酰-sn-甘油-3-磷酸乙醇胺(N-Rh-DPPE)作为荧光探针,以揭示GUV中的域共存。我们报道了无支撑脂质双层中脂质域形态的首次表征。从LAURDAN强度图像中,计算了不同温度下的激发广义极化函数(GP),以表征脂质域的相态。根据每种脂质混合物的相图,我们发现在所有脂质混合物中,对应于流体区域温度的GUV图像中荧光分布均匀。在对应于相共存区域的温度下,我们观察到不同大小和形状的脂质域,这取决于脂质样品的组成。在由DPPE/DPPC混合物形成的GUV情况下,凝胶态DPPE域呈现不同形状,如六边形、菱形、六角星、哑铃形或树枝状。在相共存区域,随着温度降低,凝胶态DPPE域在移动和生长。在对应于固态区域的温度下,分离的域保留在GUV中,显示出固-固不混溶性。在由DLPC/DPPC 1:1(摩尔/摩尔)混合物组成的GUV中发现了不同的形态。在对应于相共存的温度下,我们观察到GUV表面的凝胶域为线缺陷。随着温度降低,这些线移动并变粗。根据LAURDAN GP直方图判断,我们得出结论,DPPE/DPPC和DLPC/DPPC混合物在相共存区域的脂质相特征不同。在DPPE/DPPC混合物中,共存的是纯凝胶域和纯液态域,而在DLPC/DPPC 1:1(摩尔/摩尔)混合物中,我们观察到一相对另一相有强烈影响。在所有情况下,这些域跨越膜的内叶和外叶,表明脂质膜内单层和外单层之间有很强的耦合。这一观察结果对于无支撑脂质双层也是新颖的。