Suppr超能文献

蛋白质折叠和配体结合中的热容效应:对水在生物分子热力学中作用的重新评估。

Heat capacity effects in protein folding and ligand binding: a re-evaluation of the role of water in biomolecular thermodynamics.

作者信息

Cooper Alan

机构信息

Chemistry Department, Glasgow University, Joseph Black Building, Glasgow G12 8QQ, Scotland, UK.

出版信息

Biophys Chem. 2005 Apr 1;115(2-3):89-97. doi: 10.1016/j.bpc.2004.12.011. Epub 2004 Dec 24.

Abstract

Large "anomalous" heat capacity (DeltaC(p)) effects are a common feature of the thermodynamics of biomolecular interactions in aqueous solution and, as a result of the improved facility for direct calorimetric measurements, there is a growing body of experimental data for such effects in protein folding, protein-protein and protein-ligand interactions. Conventionally such heat capacity effects have been ascribed to hydrophobic interactions, and there are some remarkably convincing demonstrations of the usefulness of this concept. Nonetheless, there is also increasing evidence that hydrophobic interactions are not the only possible source of such effects. Here we re-evaluate the possible contributions of other interactions to the heat capacity changes to be expected for cooperative biomolecular folding and binding processes, with particular reference to the role of hydrogen bonding and solvent water interactions. Simple models based on the hydrogen-bonding propensity of water as a function of temperature give quantitative estimates of DeltaC(p) that compare well with experimental observations for both protein folding and ligand binding. The thermodynamic contribution of bound waters in protein complexes is also estimated. The prediction from simple lattice models is that trapping of water in a complex should give more exothermic binding (DeltaDeltaH-6 to -12 kJ mol(-1)) with lower entropy (DeltaDeltaS(0) approximately -11 J mol(-1) K(-1)) and more negative DeltaC(p) (by about -75 J mol(-1) K(-1)) per water molecule. More generally, it is clear that significant DeltaC(p) effects are to be expected for any macromolecular process involving a multiplicity of cooperative weak interactions of whatever kind.

摘要

较大的“反常”热容(ΔC(p))效应是水溶液中生物分子相互作用热力学的一个常见特征,并且由于直接量热测量设备的改进,关于蛋白质折叠、蛋白质 - 蛋白质和蛋白质 - 配体相互作用中此类效应的实验数据越来越多。传统上,这种热容效应被归因于疏水相互作用,并且有一些非常有说服力的证据证明了这一概念的实用性。然而,也有越来越多的证据表明疏水相互作用并非此类效应的唯一可能来源。在此,我们重新评估其他相互作用对协同生物分子折叠和结合过程中预期的热容变化可能做出的贡献,特别提及氢键和溶剂水相互作用的作用。基于水的氢键倾向随温度变化的简单模型给出了ΔC(p)的定量估计值,这些值与蛋白质折叠和配体结合的实验观察结果相当吻合。我们还估计了蛋白质复合物中结合水的热力学贡献。简单晶格模型的预测是,复合物中捕获的水应该导致更放热的结合(ΔΔH 为 -6 至 -12 kJ·mol⁻¹),具有更低的熵(ΔΔS⁰ 约为 -11 J·mol⁻¹·K⁻¹),并且每个水分子的ΔC(p)更负(约为 -75 J·mol⁻¹·K⁻¹)。更一般地说,很明显,对于任何涉及多种协同弱相互作用(无论何种类型)的大分子过程,都预期会有显著的ΔC(p)效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验