Vrieling Engel G, Sun Qianyao, Beelen Theo P M, Hazelaar Sandra, Gieskes Winfried W C, van Santen Rutger A, Sommerdijk Nico A J M
Department of Marine Biology, Center for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 14, NL-9750 AA Haren, The Netherlands.
J Nanosci Nanotechnol. 2005 Jan;5(1):68-78. doi: 10.1166/jnn.2005.0l0.
Silica becomes increasingly used in chemical, pharmaceutical, and (nano)technological processes, resulting in an increased demand for well-defined silicas and silica-based materials. The production of highly structured silica from cheap starting materials and under ambient conditions, which is a target for many researchers, is already realized in the formation of diatom biosilica, producing highly hierarchical ordered meso- and macropores silica structures. This notion formed the starting point in our integrative biomolecular and biomimetic study on diatom silicon biomineralization in which we have analyzed silica transformations and structure-direction in polymer-mediated silica syntheses using a combination of (ultra)small-angle X-ray scattering and (cryo)electron microscopy. Using bio-analogous reaction conditions and reagents, such as waterglass and (combinations of) polyethylene oxide (PEO) based polymers, we demonstrate in this review the synthesis of tailor-made mesoporous silicas in which we can, as in biosilica synthesis, control the morphological features of the resulting materials on the nanometer level as well as on the micrometer level.
二氧化硅在化学、制药和(纳米)技术过程中的应用越来越广泛,这导致对明确的二氧化硅和二氧化硅基材料的需求增加。许多研究人员的目标是从廉价的起始材料在环境条件下生产高度结构化的二氧化硅,这在硅藻生物二氧化硅的形成中已经实现,产生了高度分级有序的介孔和大孔二氧化硅结构。这一概念构成了我们对硅藻硅生物矿化进行综合生物分子和仿生研究的起点,在该研究中,我们使用(超)小角X射线散射和(冷冻)电子显微镜的组合,分析了聚合物介导的二氧化硅合成中的二氧化硅转化和结构导向。在本综述中,我们使用生物类似的反应条件和试剂,如水玻璃和基于聚环氧乙烷(PEO)的聚合物(组合),展示了定制介孔二氧化硅的合成,在其中我们可以像在生物二氧化硅合成中一样,在纳米尺度以及微米尺度上控制所得材料的形态特征。