1] Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland [2] Pharmacology and Therapeutics, School of Medicine and Centre for Pain Research, National University of Ireland, Galway, Ireland.
Nat Commun. 2013;4:2683. doi: 10.1038/ncomms3683.
Biomineralization processes identified within diatoms have inspired the design of synthetic silica structures in vitro using alkoxysilane precursors. Here we explore the use of the machinery within the living diatom to fabricate organo-silica constructs using a combination of alkoxysilane and organoalkoxysilane precursors. We report on the incorporation of thiol moieties into the diatom during frustule synthesis. Formation of valves within the parent diatom is monitored using fluorescence microscopy, and the modification of the chemical composition of the diatom is confirmed using energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and (29)Si-nuclear magnetic resonance spectroscopy. Chemical modification is achieved without loss of the nano-scale architectural features of the frustule. Extension of this work may allow the chemistry of the diatom to be tailored during synthesis.
硅藻体内所识别出的生物矿化过程启发了我们使用烷氧基硅烷前体在体外设计合成二氧化硅结构。在这里,我们探索了利用活硅藻体内的机制,使用烷氧基硅烷和有机烷氧基硅烷前体制备有机-硅结构。我们报告了巯基在硅藻壳合成过程中的掺入。使用荧光显微镜监测母硅藻内的瓣片形成,并使用能量色散 X 射线光谱、X 射线光电子能谱和(29)Si 核磁共振波谱确认硅藻化学成分的修饰。在不损失壳结构纳米级建筑特征的情况下实现了化学修饰。这项工作的扩展可能允许在合成过程中对硅藻的化学性质进行定制。