Akbay Cevdet, Rizvi Syed A A, Shamsi Shahab A
Department of Natural Sciences, Fayetteville State University, Fayetteville, North Carolina 28301, USA.
Anal Chem. 2005 Mar 15;77(6):1672-83. doi: 10.1021/ac0401422.
The feasibility of using a new and more versatile polymeric chiral surfactant, i.e., poly(sodium N-undecenoxy carbonyl-L-leucinate (poly-L-SUCL) is investigated for simultaneous enantioseparation and detection of eight structurally similar beta-blockers with tandem UV and MS detection. Three optimization approaches, i.e., direct infusion-MS, capillary zone electrophoresis-MS, and chiral micellar electrokinetic chromatography-mass spectrometry (CMEKC-MS), were investigated to optimize sheath liquid parameters, spray chamber parameters, and CMEKC separation parameters for maximum sensitivity and chiral resolution. Compared to unpolymerized micelle of L-SUCL, the use of micelle polymer (i.e., poly-L-SUCL) provided significantly higher separation efficiency, lower separation current, and higher detection sensitivity for CMEKC-ESI-MS of beta-blockers. It was also observed that, unlike monomeric L-SUCL, polymeric L-SUCL provided enantioseparation of all beta-blockers even at the lowest surfactant concentration (i.e., 5 mM poly-L-SUCL). Under optimum CMEKC and ESI-MS conditions (15 mM poly-L-SUCL, 25 mM each of NH4OAc and TEA (pH 8.0); 80% (v/v) methanol sheath liquid containing 40 mM NH4OAc (pH 8.0); sheath liquid flow rate, 5.0 microL/min; drying gas flow rate, 5 L/min; drying gas temperature, 200 degrees C; nebulizing pressure, 6 psi (0.414 bar); capillary voltage, +2.5 kV; fragmentor voltage, 85 V), baseline enantioseparation of eight beta-blockers was achieved by tandem UV (in approximately 30 min) and MS (in approximately 60 min) detection. Calibration curves for all beta-blockers were linear in the range of 0.01-0.6 mM for both CMEKC-UV and CMEKC-MS methods, but the later method provided better concentration limit of detection with similar RSD for migration time and peak areas. The CMEKC-ESI-MS method appears suitable for use as a routine procedure for high-throughput separation of beta-blockers with high sensitivity.
研究了使用一种新型且用途更广的聚合物手性表面活性剂——聚(N-十一碳烯氧基羰基-L-亮氨酸钠)(聚-L-SUCL)通过串联紫外和质谱检测同时对8种结构相似的β-受体阻滞剂进行对映体分离和检测的可行性。研究了三种优化方法,即直接进样-质谱法、毛细管区带电泳-质谱法和手性胶束电动色谱-质谱法(CMEKC-MS),以优化鞘液参数、喷雾室参数和CMEKC分离参数,实现最大灵敏度和手性分辨率。与L-SUCL的未聚合胶束相比,使用胶束聚合物(即聚-L-SUCL)对β-受体阻滞剂的CMEKC-ESI-MS分析具有显著更高的分离效率、更低的分离电流和更高的检测灵敏度。还观察到,与单体L-SUCL不同,即使在最低表面活性剂浓度(即5 mM聚-L-SUCL)下,聚合物L-SUCL也能实现所有β-受体阻滞剂的对映体分离。在最佳CMEKC和ESI-MS条件下(15 mM聚-L-SUCL、25 mM醋酸铵和三乙胺各一份(pH 8.0);含40 mM醋酸铵(pH 8.0)的80%(v/v)甲醇鞘液;鞘液流速5.0 μL/min;干燥气流速5 L/min;干燥气温度200℃;雾化压力6 psi(0.414 bar);毛细管电压+2.5 kV;碎裂电压85 V),通过串联紫外(约30分钟)和质谱(约60分钟)检测实现了8种β-受体阻滞剂的基线对映体分离。对于CMEKC-UV和CMEKC-MS方法,所有β-受体阻滞剂的校准曲线在0.01-0.6 mM范围内均呈线性,但后一种方法在迁移时间和峰面积的相对标准偏差相似的情况下提供了更好的检测浓度下限。CMEKC-ESI-MS方法似乎适合用作高灵敏度高通量分离β-受体阻滞剂的常规方法。