Suppr超能文献

非血红素硫醇铁配合物的光谱学:对腈水合酶低自旋活性位点电子结构的洞察。

Spectroscopy of non-heme iron thiolate complexes: insight into the electronic structure of the low-spin active site of nitrile hydratase.

作者信息

Kennepohl Pierre, Neese Frank, Schweitzer Dirk, Jackson Henry L, Kovacs Julie A, Solomon Edward I

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

出版信息

Inorg Chem. 2005 Mar 21;44(6):1826-36. doi: 10.1021/ic0487068.

Abstract

Detailed spectroscopic and computational studies of the low-spin iron complexes [Fe(III)(S2(Me2)N3 (Pr,Pr))(N3)] (1) and [Fe(III)(S2(Me2)N3 (Pr,Pr))]1+ (2) were performed to investigate the unique electronic features of these species and their relation to the low-spin ferric active sites of nitrile hydratases. Low-temperature UV/vis/NIR and MCD spectra of 1 and 2 reflect electronic structures that are dominated by antibonding interactions of the Fe 3d manifold and the equatorial thiolate S 3p orbitals. The six-coordinate complex 1 exhibits a low-energy S(pi) --> Fe 3d(xy) (approximately 13,000 cm(-1)) charge-transfer transition that results predominantly from the low energy of the singly occupied Fe 3d(xy) orbital, due to pure pi interactions between this acceptor orbital and both thiolate donor ligands in the equatorial plane. The 3d(pi) --> 3d(sigma) ligand-field transitions in this species occur at higher energies (>15,000 cm(-1)), reflecting its near-octahedral symmetry. The Fe 3d(xz,yz) --> Fe 3d(xy) (d(pi) --> d(pi)) transition occurs in the near-IR and probes the Fe(III)-S pi-donor bond; this transition reveals vibronic structure that reflects the strength of this bond (nu(e) approximately 340 cm(-1)). In contrast, the ligand-field transitions of the five-coordinate complex 2 are generally at low energy, and the S(pi) --> Fe charge-transfer transitions occur at much higher energies relative to those in 1. This reflects changes in thiolate bonding in the equatorial plane involving the Fe 3d(xy) and Fe 3d(x2-y2) orbitals. The spectroscopic data lead to a simple bonding model that focuses on the sigma and pi interactions between the ferric ion and the equatorial thiolate ligands, which depend on the S-Fe-S bond angle in each of the complexes. These electronic descriptions provide insight into the unusual S = 1/2 ground spin state of these complexes: the orientation of the thiolate ligands in these complexes restricts their pi-donor interactions to the equatorial plane and enforces a low-spin state. These anisotropic orbital considerations provide some intriguing insights into the possible electronic interactions at the active site of nitrile hydratases and form the foundation for further studies into these low-spin ferric enzymes.

摘要

对低自旋铁配合物[Fe(III)(S2(Me2)N3 (Pr,Pr))(N3)] (1)和[Fe(III)(S2(Me2)N3 (Pr,Pr))]1+ (2)进行了详细的光谱和计算研究,以探究这些物种独特的电子特性及其与腈水合酶低自旋铁活性位点的关系。1和2的低温紫外/可见/近红外光谱和磁圆二色光谱反映出其电子结构主要由Fe 3d轨道和赤道面硫醇盐S 3p轨道的反键相互作用主导。六配位配合物1呈现出低能量的S(π)→Fe 3d(xy)(约13,000 cm-1)电荷转移跃迁,这主要源于单占据的Fe 3d(xy)轨道能量较低,这是由于该受体轨道与赤道面中两个硫醇盐供体配体之间存在纯π相互作用。该物种中的3d(π)→3d(σ)配体场跃迁发生在较高能量(>15,000 cm-1),反映出其接近八面体对称性。Fe 3d(xz,yz)→Fe 3d(xy)(d(π)→d(π))跃迁发生在近红外区域,用于探测Fe(III)-S π供体键;该跃迁揭示了反映该键强度(ν(e)约340 cm-1)的振动电子结构。相比之下,五配位配合物2的配体场跃迁通常处于低能量,且S(π)→Fe电荷转移跃迁相对于1中的跃迁发生在高得多的能量处。这反映了赤道面中硫醇盐键合的变化,涉及Fe 3d(xy)和Fe 3d(x2-y2)轨道。光谱数据得出了一个简单的键合模型,该模型侧重于铁离子与赤道面硫醇盐配体之间的σ和π相互作用,这取决于每个配合物中的S-Fe-S键角。这些电子描述为深入了解这些配合物不寻常的S = 1/2基态自旋提供了思路:这些配合物中硫醇盐配体的取向将其π供体相互作用限制在赤道面,并强制形成低自旋态。这些各向异性轨道的考虑为腈水合酶活性位点可能存在的电子相互作用提供了一些有趣的见解,并为进一步研究这些低自旋铁酶奠定了基础。

相似文献

3
Benzoannelation stabilizes the d(xy)1 state of low-spin iron(III) porphyrinates.
Inorg Chem. 2011 Apr 18;50(8):3567-81. doi: 10.1021/ic1024873. Epub 2011 Mar 16.
9
Mechanism of NO photodissociation in photolabile manganese-NO complexes with pentadentate N5 ligands.
Inorg Chem. 2011 Dec 5;50(23):12192-203. doi: 10.1021/ic201967f. Epub 2011 Oct 31.

引用本文的文献

1
Exploring the influence of H-bonding and ligand constraints on thiolate ligated non-heme iron mediated dioxygen activation.
Chem Sci. 2024 Jul 9;15(32):12710-12720. doi: 10.1039/d4sc02787f. eCollection 2024 Aug 14.
2
Heterogeneous Fenton-like activity of novel metallosalophen magnetic nanocomposites: significant anchoring group effect.
RSC Adv. 2019 Oct 16;9(57):32966-32976. doi: 10.1039/c9ra05097c. eCollection 2019 Oct 15.
3
Electronic Structure and Reactivity of Dioxygen-Derived Aliphatic Thiolate-Ligated Fe-Peroxo and Fe(IV) Oxo Compounds.
J Am Chem Soc. 2022 May 18;144(19):8515-8528. doi: 10.1021/jacs.1c07656. Epub 2022 May 6.
4
Increasing reactivity by incorporating π-acceptor ligands into coordinatively unsaturated thiolate-ligated iron(II) complexes.
Inorganica Chim Acta. 2021 Sep 1;524. doi: 10.1016/j.ica.2021.120422. Epub 2021 Apr 30.
5
Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition.
Inorg Chem. 2021 May 17;60(10):7250-7261. doi: 10.1021/acs.inorgchem.1c00336. Epub 2021 Apr 26.
6
Influence of Thiolate versus Alkoxide Ligands on the Stability of Crystallographically Characterized Mn(III)-Alkylperoxo Complexes.
J Am Chem Soc. 2021 Apr 28;143(16):6104-6113. doi: 10.1021/jacs.0c13001. Epub 2021 Apr 14.
7
Formation of a Reactive, Alkyl Thiolate-Ligated Fe-Superoxo Intermediate Derived from Dioxygen.
J Am Chem Soc. 2019 Feb 6;141(5):1867-1870. doi: 10.1021/jacs.8b12670. Epub 2019 Jan 24.
8
How Do Ring Size and π-Donating Thiolate Ligands Affect Redox-Active, α-Imino-N-heterocycle Ligand Activation?
Inorg Chem. 2018 Feb 19;57(4):1935-1949. doi: 10.1021/acs.inorgchem.7b02748. Epub 2018 Feb 7.
9
Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate.
J Am Chem Soc. 2017 Jan 11;139(1):119-129. doi: 10.1021/jacs.6b03512. Epub 2016 Dec 29.
10
Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1.
J Biol Inorg Chem. 2015 Jul;20(5):885-94. doi: 10.1007/s00775-015-1273-3. Epub 2015 Jun 16.

本文引用的文献

3
Oxygenation of thiolates to S-bonded sulfinate in an iron III complex related to nitrile hydratase.
Chem Commun (Camb). 2004 Feb 7(3):286-7. doi: 10.1039/b312318a. Epub 2003 Dec 16.
5
The first example of a nitrile hydratase model complex that reversibly binds nitriles.
J Am Chem Soc. 2002 Sep 25;124(38):11417-28. doi: 10.1021/ja012555f.
6
Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters.
Chem Rev. 1996 Nov 7;96(7):2625-2658. doi: 10.1021/cr9500489.
7
Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites.
Chem Rev. 1996 Nov 7;96(7):2607-2624. doi: 10.1021/cr960039f.
8
Protein Control of Redox Potentials of Ironminus signSulfur Proteins.
Chem Rev. 1996 Nov 7;96(7):2491-2514. doi: 10.1021/cr950045w.
9
Structural and Functional Aspects of Metal Sites in Biology.
Chem Rev. 1996 Nov 7;96(7):2239-2314. doi: 10.1021/cr9500390.
10
Nucleic Acid recognition by metal complexes of bleomycin.
Chem Rev. 1999 Sep 8;99(9):2797-816. doi: 10.1021/cr980449z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验