Suppr超能文献

探索氢键和配体限制对硫醇盐连接的非血红素铁介导的双氧活化的影响。

Exploring the influence of H-bonding and ligand constraints on thiolate ligated non-heme iron mediated dioxygen activation.

作者信息

Lundahl Maike N, Greiner Maria B, Piquette Marc C, Gannon Paige M, Kaminsky Werner, Kovacs Julie A

机构信息

Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA

Department of Chemistry, Tufts University 62 Talbot Avenue Medford Massachusetts 02155 USA.

出版信息

Chem Sci. 2024 Jul 9;15(32):12710-12720. doi: 10.1039/d4sc02787f. eCollection 2024 Aug 14.

Abstract

Converting triplet dioxygen into a powerful oxidant is fundamentally important to life. The study reported herein quantitatively examines the formation of a well-characterized, reactive, O-derived thiolate ligated Fe-superoxo using low-temperature stopped-flow kinetics. Comparison of the kinetic barriers to the formation of this species two routes, involving either the addition of (a) O to [Fe(S N(Pr,Pr))] (1) or (b) superoxide to [Fe(S N(Pr,Pr))] (3) is shown to provide insight into the mechanism of O activation. Route (b) was shown to be significantly slower, and the kinetic barrier 14.9 kJ mol higher than route (a), implying that dioxygen activation involves inner-sphere, as opposed to outer sphere, electron transfer from Fe(ii). H-bond donors and ligand constraints are shown to dramatically influence O binding kinetics and reversibility. Dioxygen binds irreversibly to [Fe(S N(Pr,Pr))] (1) in tetrahydrofuran, but reversibly in methanol. Hydrogen bonding decreases the ability of the thiolate sulfur to stabilize the transition state and the Fe-superoxo, as shown by the 10 kJ mol increase in the kinetic barrier to O binding in methanol tetrahydrofuran. Dioxygen release from [Fe(S N(Pr,Pr))O] (2) is shown to be 24 kJ mol higher relative to previously reported [Fe(SN(tren))(O)] (5), the latter of which contains a more flexible ligand. These kinetic results afford an experimentally determined reaction coordinate that illustrates the influence of H-bonding and ligand constraints on the kinetic barrier to dioxygen activation an essential step in biosynthetic pathways critical to life.

摘要

将三线态双原子氧转化为强氧化剂对生命至关重要。本文报道的研究利用低温停流动力学定量研究了一种特征明确、具有反应活性的、由O衍生的硫醇盐连接的铁超氧物种的形成。通过比较该物种形成的两条途径的动力学势垒,即(a) O加成到[Fe(S N(Pr,Pr))] (1) 或(b) 超氧化物加成到[Fe(S N(Pr,Pr))] (3),来深入了解O活化的机制。结果表明途径(b)明显更慢,其动力学势垒比途径(a)高14.9 kJ/mol,这意味着双原子氧的活化涉及内球电子转移,而不是外球电子转移,即电子从Fe(ii)转移。氢键供体和配体限制被证明会显著影响O的结合动力学和可逆性。在四氢呋喃中,双原子氧与[Fe(S N(Pr,Pr))] (1) 不可逆结合,但在甲醇中可逆结合。氢键降低了硫醇盐硫稳定过渡态和铁超氧的能力,如甲醇中O结合的动力学势垒相对于四氢呋喃增加了10 kJ/mol所示。相对于先前报道的[Fe(SN(tren))(O)] (5),[Fe(S N(Pr,Pr))O] (2) 中双原子氧的释放势垒高24 kJ/mol,后者含有更灵活的配体。这些动力学结果提供了一个实验确定的反应坐标,说明了氢键和配体限制对双原子氧活化动力学势垒的影响,这是生命关键生物合成途径中的一个重要步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e8/11325341/600d539bb3f6/d4sc02787f-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验