Rogers Gregory C, Rogers Stephen L, Sharp David J
Department of Physiology and Biophysics, 223 Ullmann Building, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
J Cell Sci. 2005 Mar 15;118(Pt 6):1105-16. doi: 10.1242/jcs.02284.
Accurate and timely chromosome segregation is a task performed within meiotic and mitotic cells by a specialized force-generating structure--the spindle. This micromachine is constructed from numerous proteins, most notably the filamentous microtubules that form a structural framework for the spindle and also transmit forces through it. Poleward flux is an evolutionarily conserved mechanism used by spindle microtubules both to move chromosomes and to regulate spindle length. Recent studies have identified a microtubule-depolymerizing kinesin as a key force-generating component required for flux. On the basis of these findings, we propose a new model for flux powered by a microtubule-disassembly mechanism positioned at the spindle pole. In addition, we use the flux model to explain the results of spindle manipulation experiments to illustrate the importance of flux for proper chromosome positioning.
准确且及时的染色体分离是减数分裂和有丝分裂细胞内由一种特殊的产生力的结构——纺锤体所执行的任务。这个微型机器由众多蛋白质构成,最显著的是丝状微管,它为纺锤体形成结构框架并通过它传递力。极向流是一种进化上保守的机制,纺锤体微管利用它来移动染色体并调节纺锤体长度。最近的研究已确定一种微管解聚驱动蛋白是极向流所需的关键产生力的组件。基于这些发现,我们提出了一种由位于纺锤体极的微管拆卸机制驱动的极向流新模型。此外,我们使用极向流模型来解释纺锤体操作实验的结果,以说明极向流对染色体正确定位的重要性。