Suppr超能文献

纳米力学在监测靶向癌细胞细胞骨架药物的效果中的应用。

Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton.

机构信息

Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.

出版信息

Int J Mol Sci. 2020 Nov 20;21(22):8786. doi: 10.3390/ijms21228786.

Abstract

Increasing attention is devoted to the use of nanomechanics as a marker of various pathologies. Atomic force microscopy (AFM) is one of the techniques that could be applied to quantify the nanomechanical properties of living cells with a high spatial resolution. Thus, AFM offers the possibility to trace changes in the reorganization of the cytoskeleton in living cells. Impairments in the structure, organization, and functioning of two main cytoskeletal components, namely, actin filaments and microtubules, cause severe effects, leading to cell death. That is why these cytoskeletal components are targets for antitumor therapy. This review intends to describe the gathered knowledge on the capability of AFM to trace the alterations in the nanomechanical properties of living cells induced by the action of antitumor drugs that could translate into their effectiveness.

摘要

越来越多的人关注纳米力学在各种病理学中的应用。原子力显微镜(AFM)是一种可以应用于定量测量活细胞纳米力学特性的技术,具有很高的空间分辨率。因此,AFM 提供了追踪活细胞细胞骨架重排变化的可能性。 actin 丝和微管这两种主要细胞骨架成分的结构、组织和功能的损伤会导致严重的影响,导致细胞死亡。这就是为什么这些细胞骨架成分是抗肿瘤治疗的靶点。这篇综述旨在描述 AFM 跟踪抗肿瘤药物作用下活细胞纳米力学特性变化的能力方面的知识积累,这些变化可能转化为它们的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ca/7699791/4990b1be90d1/ijms-21-08786-g001.jpg

相似文献

1
Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton.
Int J Mol Sci. 2020 Nov 20;21(22):8786. doi: 10.3390/ijms21228786.
5
Fast Stiffness Mapping of Cells Using High-Bandwidth Atomic Force Microscopy.
ACS Nano. 2016 Jan 26;10(1):257-64. doi: 10.1021/acsnano.5b03959. Epub 2015 Dec 15.
6
The role of the cytoskeleton in cellular force generation in 2D and 3D environments.
Phys Biol. 2011 Feb;8(1):015009. doi: 10.1088/1478-3975/8/1/015009. Epub 2011 Feb 7.
8
Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy.
Nanomedicine. 2014 Aug;10(6):1323-33. doi: 10.1016/j.nano.2014.03.002. Epub 2014 Mar 12.
9
Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach.
Cytoskeleton (Hoboken). 2013 Nov;70(11):729-40. doi: 10.1002/cm.21139. Epub 2013 Oct 2.
10
Nanomechanical properties of solid tumors as treatment monitoring biomarkers.
Acta Biomater. 2022 Dec;154:324-334. doi: 10.1016/j.actbio.2022.10.021. Epub 2022 Oct 13.

引用本文的文献

1
High throughput cell mechanotyping of cell response to cytoskeletal modulations using a microfluidic cell deformation system.
Microfluid Nanofluidics. 2024 Dec;28(12). doi: 10.1007/s10404-024-02774-4. Epub 2024 Nov 26.
2
Organoids technology in cancer research: from basic applications to advanced models.
Front Cell Dev Biol. 2025 May 22;13:1569337. doi: 10.3389/fcell.2025.1569337. eCollection 2025.
3
Atomic Force Microscopy for the Study of Cell Mechanics in Pharmaceutics.
Pharmaceutics. 2024 May 29;16(6):733. doi: 10.3390/pharmaceutics16060733.
4
Mechanical properties of human tumour tissues and their implications for cancer development.
Nat Rev Phys. 2024 Apr;6(4):269-282. doi: 10.1038/s42254-024-00707-2. Epub 2024 Mar 19.
5
Pleiotropic physiological functions of Piezo1 in human body and its effect on malignant behavior of tumors.
Front Physiol. 2024 Apr 16;15:1377329. doi: 10.3389/fphys.2024.1377329. eCollection 2024.
7
Mechanobiology of Dental Pulp Cells.
Cells. 2024 Feb 21;13(5):375. doi: 10.3390/cells13050375.
9
Atomic Force Microscopy Methods to Measure Tumor Mechanical Properties.
Cancers (Basel). 2023 Jun 22;15(13):3285. doi: 10.3390/cancers15133285.

本文引用的文献

1
Evaluating the efficacy of the anticancer drug cetuximab by atomic force microscopy.
RSC Adv. 2018 Jun 13;8(39):21793-21797. doi: 10.1039/c8ra03215g.
2
Cytotoxic and biomechanical effects of clinical dosing schemes of paclitaxel on neurons and cancer cells.
Cancer Chemother Pharmacol. 2020 Aug;86(2):245-255. doi: 10.1007/s00280-020-04113-0. Epub 2020 Jul 19.
3
Melanoma in the Eyes of Mechanobiology.
Front Cell Dev Biol. 2020 Feb 11;8:54. doi: 10.3389/fcell.2020.00054. eCollection 2020.
5
Changes in spinal cord stiffness in the course of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.
Arch Biochem Biophys. 2020 Feb 15;680:108221. doi: 10.1016/j.abb.2019.108221. Epub 2019 Dec 6.
6
Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise.
Nat Rev Clin Oncol. 2020 Feb;17(2):91-107. doi: 10.1038/s41571-019-0267-4. Epub 2019 Sep 30.
7
Biophysical and Biochemical Characteristics as Complementary Indicators of Melanoma Progression.
Anal Chem. 2019 Aug 6;91(15):9885-9892. doi: 10.1021/acs.analchem.9b01542. Epub 2019 Jul 25.
9
The Cytoskeleton-A Complex Interacting Meshwork.
Cells. 2019 Apr 18;8(4):362. doi: 10.3390/cells8040362.
10
Combined administration of PTX and S-HM-3 in TPGS/Solutol micelle system for oncotarget therapy.
Int J Nanomedicine. 2019 Feb 7;14:1011-1026. doi: 10.2147/IJN.S189864. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验