Suppr超能文献

Functional proteins involved in regulation of intracellular Ca(2+) for drug development: chronic nicotine treatment upregulates L-type high voltage-gated calcium channels.

作者信息

Katsura Masashi, Ohkuma Seitaro

机构信息

Department of Pharmacology, Kawasaki Medical University, Kurashiki.

出版信息

J Pharmacol Sci. 2005 Mar;97(3):344-7. doi: 10.1254/jphs.fmj04007x3. Epub 2005 Mar 12.

Abstract

Neurochemical mechanisms underlying drug dependence and withdrawal syndrome remain unclear. In this review, we discuss how chronic nicotine exposure to neurons affects expression of diazepam binding inhibitor (DBI), an endogenous anxiogenic neuropeptide supposed to be a common substance participating drug dependence, and function of L-type high voltage-gated Ca(2+) channels (HVCCs). We also discuss the functional interaction between DBI and L-type HVCCs in nicotine dependence. Both DBI levels and [(45)Ca(2+)] influx significantly increased in the brain from mice treated with nicotine for long term, which was further enhanced after abrupt cessation of nicotine and was abolished by nicotinic acetylcholine receptor (nAChR) antagonists. Similar responses of DBI expression and L-type HVCC function were observed in cerebral cortical neurons after sustained exposure to nicotine. In addition, increased DBI expression was inhibited by antagonists of nAChR and L-type HVCCs. Sustained exposure of neurons to nicotine significantly enhanced expression of alpha(1) and alpha(2)/delta(1) subunits for L-type HVCCs and caused an increase in the B(max) value of [(3)H]verapamil binding to the particulate fractions. Therefore, it is concluded that the alterations in DBI expression is mediated via increased influx of Ca(2+) through upregulated L-type HVCCs and these neurochemical changes have a close relationship with development of nicotine dependence and/or its withdrawal syndrome.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验