Suppr超能文献

细胞一氧化氮 - 环磷酸鸟苷信号传导的动力学

Dynamics of cellular NO-cGMP signaling.

作者信息

Garthwaite John

机构信息

Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Front Biosci. 2005 May 1;10:1868-80. doi: 10.2741/1666.

Abstract

Despite its widespread biological importance, knowledge about the basic workings of the nitric oxide (NO) signaling pathway at the cellular level has been unsatisfactory. As reviewed here, recent findings have begun to rectify this deficiency. Elementary NO signals may be very discrete, being short lived (seconds or less), of low amplitude (peak concentration in the low nanomolar range), and confined to the immediate vicinity of the source (a micron or less). A more global signal may occur when many nearby sources are active simultaneously, though the amplitude appears to remain low. The properties of guanylyl cyclase (GC)-coupled NO receptors, for which a kinetic model is introduced, are well tuned to detect NO signals. The receptors can respond even to brief pulses of NO because they activate and deactivate with sub-second kinetics and they possess the appropriate sensitivity to low nanomolar NO concentrations. In some cells at least, the NO-evoked GC activity is very high, equivalent to the synthesis of up to 100 microM cGMP per second. The resulting shapes and sizes of cellular cGMP responses can vary considerably from cell to cell, however, which is likely to have repercussions for the selection of downstream pathways. The cellular diversity can be explained by variations in the rates at which the receptors desensitize and in the rates of cGMP hydrolysis by phosphodiesterases. There is a growing list of factors that may serve to modulate NO receptor function in cells, including Ca2+, ATP, phosphorylation by kinases, and physical interactions with other proteins.

摘要

尽管一氧化氮(NO)信号通路在生物学上具有广泛的重要性,但在细胞水平上关于其基本运作的认识仍不尽人意。正如本文所综述的,最近的研究结果已开始纠正这一缺陷。基本的NO信号可能非常离散,持续时间短(几秒或更短)、幅度低(峰值浓度在低纳摩尔范围内),并且局限于源的紧邻区域(一微米或更小)。当许多附近的源同时活跃时,可能会出现更全局性的信号,不过其幅度似乎仍然较低。本文引入了一种动力学模型,对与鸟苷酸环化酶(GC)偶联的NO受体的特性进行了很好的调整,以检测NO信号。这些受体甚至可以对短暂的NO脉冲做出反应,因为它们以亚秒级动力学激活和失活,并且对低纳摩尔浓度的NO具有适当的敏感性。至少在一些细胞中,NO诱发的GC活性非常高,相当于每秒合成高达100微摩尔的环磷酸鸟苷(cGMP)。然而,由此产生的细胞cGMP反应的形状和大小在不同细胞之间可能有很大差异,这可能会对下游途径的选择产生影响。细胞多样性可以通过受体脱敏速率和磷酸二酯酶对cGMP水解速率的变化来解释。越来越多的因素可能会调节细胞中NO受体的功能,包括钙离子(Ca2+)、三磷酸腺苷(ATP)、激酶的磷酸化作用以及与其他蛋白质的物理相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验