Leber Markus, Kaderali Lars, Schönhuth Alexander, Schrader Rainer
Institute for Biochemistry, University of Cologne, Zülpicher Strasse 47, Köln, D-50674, Germany.
Bioinformatics. 2005 May 15;21(10):2375-82. doi: 10.1093/bioinformatics/bti379. Epub 2005 Mar 15.
In a wide range of experimental techniques in biology, there is a need for an efficient method to calculate the melting temperature of pairings of two single DNA strands. Avoiding cross-hybridization when choosing primers for the polymerase chain reaction or selecting probes for large-scale DNA assays are examples where the exact determination of melting temperatures is important. Beyond being exact, the method has to be efficient, as these techniques often require the simultaneous calculation of melting temperatures of up to millions of possible pairings. The problem is to simultaneously determine the most stable alignment of two sequences, including potential loops and bulges, and calculate the corresponding melting temperature.
As the melting temperature can be expressed as a fraction in terms of enthalpy and entropy differences of the corresponding annealing reaction, we propose to use a fractional programming algorithm, the Dinkelbach algorithm, to solve the problem. To calculate the required differences of enthalpy and entropy, the Nearest Neighbor model is applied. Using this model, the substeps of the Dinkelbach algorithm in our problem setting turn out to be calculations of alignments which optimize an additive score function. Thus, the usual dynamic programming techniques can be applied. The result is an efficient algorithm to determine melting temperatures of two DNA strands, suitable for large-scale applications such as primer or probe design.
The software is available for academic purposes from the authors. A web interface is provided at http://www.zaik.uni-koeln.de/bioinformatik/fptm.html
在生物学的广泛实验技术中,需要一种有效的方法来计算两条单链DNA配对的解链温度。在为聚合酶链反应选择引物或为大规模DNA检测选择探针时避免交叉杂交,就是精确确定解链温度很重要的例子。除了精确之外,该方法还必须高效,因为这些技术通常需要同时计算多达数百万种可能配对的解链温度。问题在于同时确定两条序列的最稳定比对,包括潜在的环和凸起,并计算相应的解链温度。
由于解链温度可以用相应退火反应的焓和熵差的分数形式表示,我们建议使用分数规划算法——丁克尔巴赫算法来解决这个问题。为了计算所需的焓和熵差,应用了最近邻模型。使用该模型,在我们的问题设置中,丁克尔巴赫算法的子步骤结果是对优化加法得分函数的比对进行计算。因此,可以应用常用的动态规划技术。结果是一种用于确定两条DNA链解链温度的高效算法,适用于引物或探针设计等大规模应用。
该软件可出于学术目的从作者处获得。可通过http://www.zaik.uni-koeln.de/bioinformatik/fptm.html访问网络界面。