Bonod Nicolas, Popov Evgeny, Nevière Michel
Institut Fresnel, Unité Mixte de Recherche Associée au Centre National de la Recherche Scientifique No 6133, Université de Provence, Faculté des Sciences et Techniques de St Jérôme, 13397 Marseille Cedex 20, France.
J Opt Soc Am A Opt Image Sci Vis. 2005 Mar;22(3):481-90. doi: 10.1364/josaa.22.000481.
We present a differential theory for solving Maxwell equations in cylindrical coordinates, projecting them onto a Fourier-Bessel basis. Numerical calculations require the truncation of that basis, so that correct rules of factorization have to be used. The convergence of the method is studied for different cases of dielectric and metallic cylinders of finite length. Applications of such a method are presented, with a special emphasis on the near-field map inside a hole pierced in a plane metallic film.
我们提出了一种用于求解圆柱坐标系中麦克斯韦方程组的微分理论,将其投影到傅里叶 - 贝塞尔基上。数值计算需要截断该基,因此必须使用正确的因式分解规则。针对有限长度的介质圆柱体和金属圆柱体的不同情况,研究了该方法的收敛性。介绍了这种方法的应用,特别强调了平面金属膜上穿孔内部的近场图。