Subramaniam Srinivasa, Shahani Neelam, Strelau Jens, Laliberté Christine, Brandt Roland, Kaplan David, Unsicker Klaus
Neuroanatomy and Interdisciplinary Center for Neurosciences, University of Heidelberg, D-69120 Heidelberg, Germany.
J Neurosci. 2005 Mar 16;25(11):2838-52. doi: 10.1523/JNEUROSCI.5060-04.2005.
Extracellular signal-regulated kinase (ERK) activation has been shown to promote neuronal death in various paradigms. We demonstrated previously that the late and sustained ERK activation in cerebellar granule neurons (CGNs) cultured in low potassium predominantly promotes plasma membrane (PM) damage. Here, we examined the effects of a well established neuronal survival factor, insulin-like growth factor 1 (IGF-1), on the ERK cell death pathway. Stimulation of CGNs with IGF-1 induced an early and transient ERK activation but abrogated the appearance of late and sustained ERK. Withdrawal or readdition of IGF-1 after 4 h in low potassium failed to prevent sustained ERK activation and cell death. IGF-1 activated the protein kinase A (PKA) to mediate ERK inhibition via c-Raf phosphorylation at an inhibitory site (Ser259). Phosphatidylinositol 3-kinase (PI3K) or PKA inhibitors, but not a specific Akt inhibitor, abrogated PKA signaling. This suggests that the PI3K/PKA/c-Raf-Ser259 pathway mediates ERK inhibition by IGF-1 independent of Akt. In addition, adenoviral-mediated expression of constitutively active MEK (mitogen-activated protein kinase kinase) or Sindbis viral-mediated expression of mutant Raf Ser259Ala both attenuated IGF-1-mediated prevention of PM damage. Activation of caspase-3 promoted DNA damage. Its inhibition by IGF-1 was both PI3K and Akt dependent but PKA independent. 8-Br-cAMP, an activator of PKA, induced phosphorylation of c-Raf-Ser259 and inhibited ERK activation without affecting caspase-3. This indicates a selective role for PKA in ERK inhibition through c-Raf-Ser259 phosphorylation. Together, these data demonstrate that IGF-1 can positively and negatively regulate the ERK pathway in the same neuronal cell, and provide new insights into the PI3K/Akt/PKA signaling pathways in IGF-1-mediated neuronal survival.
细胞外信号调节激酶(ERK)的激活已被证明在各种模式中会促进神经元死亡。我们之前证明,在低钾环境中培养的小脑颗粒神经元(CGNs)中,晚期和持续的ERK激活主要会促进质膜(PM)损伤。在此,我们研究了一种成熟的神经元存活因子,即胰岛素样生长因子1(IGF-1),对ERK细胞死亡途径的影响。用IGF-1刺激CGNs会诱导早期和短暂的ERK激活,但可消除晚期和持续的ERK出现。在低钾环境中培养4小时后撤回或重新添加IGF-1无法阻止持续的ERK激活和细胞死亡。IGF-1激活蛋白激酶A(PKA),通过在抑制位点(Ser259)对c-Raf进行磷酸化来介导ERK抑制。磷脂酰肌醇3激酶(PI3K)或PKA抑制剂,而非特异性Akt抑制剂,可消除PKA信号。这表明PI3K/PKA/c-Raf-Ser259途径介导IGF-1对ERK的抑制,且不依赖于Akt。此外,腺病毒介导的组成型活性MEK(丝裂原活化蛋白激酶激酶)表达或辛德毕斯病毒介导的突变型Raf Ser259Ala表达均减弱了IGF-1介导的对质膜损伤的预防作用。半胱天冬酶-3的激活会促进DNA损伤。IGF-1对其的抑制作用既依赖于PI3K和Akt,又不依赖于PKA。8-溴环磷酸腺苷(8-Br-cAMP),一种PKA激活剂,可诱导c-Raf-Ser259磷酸化并抑制ERK激活,而不影响半胱天冬酶-3。这表明PKA在通过c-Raf-Ser259磷酸化抑制ERK方面具有选择性作用。总之,这些数据表明IGF-1可以在同一神经元细胞中对ERK途径进行正向和负向调节,并为IGF-1介导的神经元存活中的PI3K/Akt/PKA信号通路提供了新的见解。